Electrónica, Sensores, Actuadores y Periféricos

Conceptos Elementales

Corriente Continua

La corriente continua (CC en español, en inglés DC, de Direct Current) se refiere al flujo continuo de carga eléctrica a través de un conductor entre dos puntos de distinto potencial, que no cambia de sentido con el tiempo. A diferencia de la corriente alterna (CA en español, AC en inglés, de Alternating Current), en la corriente continua las cargas eléctricas circulan siempre en la misma dirección. Aunque comúnmente se identifica la corriente continua con una corriente constante, es continua toda corriente que mantenga siempre la misma polaridad, así disminuya su intensidad conforme se va consumiendo la carga (por ejemplo cuando se descarga una batería eléctrica). También se dice corriente continua cuando los electrones se mueven siempre en el mismo sentido, el flujo se denomina corriente continua y va (por convenio) del polo positivo al negativo.

Ley de Ohm

La ley de Ohm, postulada por el físico y matemático alemán Georg Simon Ohm, es una ley de la electricidad. Establece que la intensidad de la corriente I que circula por un conductor es proporcional a la diferencia de potencial V que aparece entre los extremos del citado conductor. Ohm completó la ley introduciendo la noción de resistencia eléctrica  R; esta es el coeficiente de proporcionalidad que aparece en la relación entre I y V.

Pulsador

Un botón o pulsador es un dispositivo utilizado para realizar cierta función. Los botones son de diversas formas y tamaños y se encuentran en todo tipo de dispositivos, aunque principalmente en aparatos eléctricos y electrónicos. Los botones son por lo general activados, al ser pulsados con un dedo. Permiten el flujo de corriente mientras son accionados. Cuando ya no se presiona sobre él vuelve a su posición de reposo.

Puede ser un contacto normalmente abierto en reposo NA o NO (Normally Open en Inglés), o con un contacto normalmente cerrado en reposo NC.

Cuando nos de desenvolvemos en el entorno de los microcontroladores, nos encontramos con un término poco común, me refiero a la polarización de una E/S, debemos saber que hay dos tipos de polarización, polarización alta la resistencia (término inglés Pullup) va conectada a + (5V) o polarización baja la resistencia (término inglés Pulldown) va conectada a masa – (0V). Siguen dos esquemas de estos términos:

Al trabajar con botones nos vamos a encontrar el problema de los rebotes o bouncing. La solución pasa por leer el estado del botón cuando se produce el borde ascendente de la tensión a extremos de los contactos del pulsador e introducir inmediatamente la salida con ese estado, el resto de entradas (se llama ruido) se inhiben o anulan mediante un lapsus de tiempo. Véase la imagen de debajo para entender mejor lo dicho.

Para solucionar el problema de los rebotes podemos hacerlo vía hardware o software:

  • Hardware: aquí se pueden utilizar diferentes técnicas, pero la más común es utilizar un condensador conectado en paralelo al pulsador. El condensador tardará cierto tiempo en cargarse y una vez que esté cargado, la señal de salida será igual a la señal de entrada.
  • Software: puede utilizarse solamente cuando tratemos la señal con un procesador, es decir, hay algún programa que lea la señal emitida por el pulsador. La técnica más utilizada consiste en ignorar las conmutaciones del valor del sensor si desde la última conmutación válida no ha pasado suficiente tiempo.

Sensores

Un sensor es un dispositivo capaz de detectar magnitudes físicas o químicas, llamadas variables de instrumentación, y transformarlas en variables eléctricas. Las variables de instrumentación pueden ser por ejemplo: temperatura, intensidad lumínica, distancia, aceleración, inclinación, desplazamiento, presión, fuerza, torsión, humedad, movimiento, pH, etc. Una magnitud eléctrica puede ser una resistencia eléctrica (como en una RTD), una capacidad eléctrica (como en un sensor de humedad o un sensor capacitivo), una tensión eléctrica (como en un termopar), una corriente eléctrica (como en un fototransistor), etc.

Los sensores se pueden clasificar en función de los datos de salida en:

  • Digitales
  • Analógicos

Y dentro de los sensores digitales, estos nos pueden dar una señal digital simple con dos estados como una salida de contacto libre de tensión o una salida en bus digital.

A la hora de elegir un sensor para Arduino debemos tener en cuenta los valores que puede leer las entradas analógicas o digitales de la placa para poder conectarlo o sino adaptar la señal del sensor a los valores que acepta Arduino.

Una vez comprobado que el sensor es compatible con las entradas de Arduino, hay que verificar cómo leer el sensor mediante la programación, comprobar si existe una librería o es posible leerlo con los métodos disponibles de lectura de entrada analógica o digital.

Por último verificar cómo alimentar el sensor y comprobar si podemos hacerlo desde el propio Arduino o necesitamos una fuente exterior. Además, en función del número de sensores que queramos conectar es posible que Arduino no pueda alimentar todos. Para saber si podremos alimentar los sensores, debemos conocer las limitaciones de alimentación de Arduino que veremos en el capítulo 2 del curso http://www.aprendiendoarduino.com/arduino-avanzado-2016/

Características de  los sensores

  • Rango de medida: dominio en la magnitud medida en el que puede aplicarse el sensor.
  • Precisión: es el error de medida máximo esperado.
  • Offset o desviación de cero: valor de la variable de salida cuando la variable de entrada es nula. Si el rango de medida no llega a valores nulos de la variable de entrada, habitualmente se establece otro punto de referencia para definir el offset.
  • Linealidad o correlación lineal.
  • Sensibilidad de un sensor: suponiendo que es de entrada a salida y la variación de la magnitud de entrada.
  • Resolución: mínima variación de la magnitud de entrada que puede detectarse a la salida.
  • Rapidez de respuesta: puede ser un tiempo fijo o depender de cuánto varíe la magnitud a medir. Depende de la capacidad del sistema para seguir las variaciones de la magnitud de entrada.
  • Derivas: son otras magnitudes, aparte de la medida como magnitud de entrada, que influyen en la variable de salida. Por ejemplo, pueden ser condiciones ambientales, como la humedad, la temperatura u otras como el envejecimiento (oxidación, desgaste, etc.) del sensor.
  • Repetitividad: error esperado al repetir varias veces la misma medida.

Más información: http://es.wikipedia.org/wiki/Sensor#Caracter.C3.ADsticas_de_un_sensor

Tipos de sensores: http://es.wikipedia.org/wiki/Sensor#Tipos_de_sensores

Ejemplos Sensores para Arduino

Actuadores y Periféricos

Un actuador es un dispositivo capaz de transformar energía hidráulica, neumática o eléctrica en la activación de un proceso con la finalidad de generar un efecto sobre elemento externo. Este recibe la orden de un regulador, controlador o en nuestro caso un Arduino y en función a ella genera la orden para activar un elemento final de control como, por ejemplo, una válvula.

Existen varios tipos de actuadores como son:

  • Electrónicos
  • Hidráulicos
  • Neumáticos
  • Eléctricos
  • Motores
  • Bombas

Periférico es la denominación genérica para designar al aparato o dispositivo auxiliar e independiente conectado a la unidad central de procesamiento o en este caso a Arduino. Se consideran periféricos a las unidades o dispositivos de hardware a través de los cuales Arduino se comunica con el exterior, y también a los sistemas que almacenan o archivan la información, sirviendo de memoria auxiliar de la memoria principal.

Ejemplos de periféricos:

  • Pantallas LCD
  • Teclados
  • Memorias externas
  • Cámaras
  • Micrófonos
  • Impresoras
  • Pantalla táctil
  • Displays numéricos
  • Zumbadores
  • Indicadores luminosos, etc…

Para cada actuador o periférico, necesitamos un “driver” o manejador para poder mandar órdenes desde Arduino.

  • Recordad que los pines de Arduino solo pueden manejar un máximo de 40mA y recomendable usar 20mA de forma continua.
  • Recordar que Arduino solo puede manejar un total de 200 mA de salida. Es decir que la corriente máxima que admite Vcc y GND son 200 mA.
  • Recordar que los pines Arduino solo pueden tener los valores de 5V (3.3V en algunos modelos) y 0V. No es posible cualquier otro valor de tensión.
  • La alimentación máxima del pin de 5V y del pin de 3.3V dependerá del regulador de tensión que tenga la placa, en el caso de Arduino UNO la limitación es 1 A para 5V y 150 mA para 3.3V

A la hora de seleccionar un actuador o periférico para usar con arduino habrá que ver sus características y cómo hacer el interface con arduino. En el playground de Arduino existe una gran base de datos de conocimiento para conectar Arduino con casi cualquier HW: http://playground.arduino.cc/Main/InterfacingWithHardware

Tutoriales para conectar Arduino con diversos dispositivos: http://playground.arduino.cc/Learning/Tutorials

Ejemplos de Actuadores y Periféricos para Arduino

Práctica: Sensores y Actuadores

Smoothing: https://aprendiendoarduino.wordpress.com/2016/07/02/smoothing/

Sensor de Temperatura: https://aprendiendoarduino.wordpress.com/2016/07/02/sensor-de-temperatura/

Display LCD: https://aprendiendoarduino.wordpress.com/2016/07/03/display-lcd/

Motores: https://aprendiendoarduino.wordpress.com/2016/09/16/uso-de-motores-2/

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s