Archivo de la categoría: Arduino

Arduino Day Logroño 2017

Si quieres estar al día de los eventos que se realizan en Logroño sobre temas relacionados con Arduino, comunidad Maker, HW libre, Impresoras 3D, etc… manda un correo a aprendiendoarduino@gmail.com o apuntate a la lista de correo noticias@aprendiendoarduino.com


El pasado 1 de abril de 2017 celebramos en tres localizaciones diferentes y con diversos eventos el ArduinoDay en Logroño.

El Arduino Day de Logroño comenzó a las 9.00 en el Think TIC con dos charlas relacionadas con el Internet de las Cosas (IoT).

La presentación de la jornada de Arduino Day en Logroño fue a cargo de Ernesto Rodríguez, responsable de vigilancia tecnológica del ThinkTIC del Gobierno de La Rioja.

La primera charla fue “IoT. Conectando cosas con Arduino” donde Enrique Crespo habló de los elementos necesarios para abordar un proyecto de IoT basado en Arduino. El vídeo de la charla puede verse en: http://www.innovarioja.tv/index.php/video/ver/1661

La presentación y documentación de la charla “IoT. Conectando cosas con Arduino” está publicada en http://www.aprendiendoarduino.com/iot-conectando-dispositivos-con-arduino/ y los apartados tratados fueron:

Acto seguido Diego Soto presentó la charla “Seguridad en IoT” donde trató uno de los aspectos más importantes del IoT, la seguridad y trato de concienciar de ello a los asistentes. El vídeo de la charla puede verse en: http://www.innovarioja.tv/index.php/video/ver/1662

Una vez acabadas las charlas paramos a tomar un café para coger fuerzas y empezar con los talleres. En el ThinkTIC se realizaron 3 talleres simultáneos.

Taller “Iniciación a la impresión 3D, mi impresora y yo!!!” por Vicente Roca donde explicó cómo montar una impresora 3D y habló de su experiencia.

Taller “Experiencia desde Cero con Arduino” por Julio Clavijo donde hizo una explicación para iniciar a los asistentes en el uso de Arduino.

Taller: “IoT. Conectando Cosas con Arduino” por Enrique Crespo que fue una continuación de la charla impartida a primera hora y se pusieron en práctica varios proyectos IoT basados en Arduino. La documentación de este taller está en http://www.aprendiendoarduino.com/taller-iot-conectando-dispositivos-con-arduino/ y el código usado en el taller está en https://github.com/jecrespo/aprendiendoarduino-iot

El siguiente evento fue en la Universidad de La Rioja, en el makerspace de la Universidad Área UR-maker. Donde Alpha Pernía presentó el makerspace y habló de la experiencia montando un makerspace.

El último evento se realizó en la Sociedad Gastronómica La Trastienda donde se hizo una merienda maker. Vicente Roca trajo su impresora 3D, Abel Yécora presento unas impresoras y un software para hacer figuras en 3D y José Domínguez presentó su proyecto maker de una máquina de boxeo con Arduino. Juan Nieto ha publicado más información de este evento y del Arduino Day en https://makerslarioja.wordpress.com/2017/04/03/arduino-day-2017-una-gran-fiesta/

Me gustaría destacar el proyecto que presentó José Domínguez y que podéis ver en este vídeo:

Agradecimientos

Por mi parte quiero agradecer al ThinkTIC y a Ernesto el apoyo que nos han dado para poder celebrar este evento. También agradecer a todo aquellos que han hecho posible el Arduino Day en el ThinkTIC: Diego Soto, Julio Clavijo, Vicente Roca,  Mario Ezquerro, Miguel Susunaga, Arturo Martínez y a todos los asistentes.

Por último gracias a los organizadores y colaboradores de los otros dos eventos en el Área UR-maker y La Trastienda: Alpha Pernía, Juan Nieto, Abel Yécora, José Domínguez, Carmen Méndez, etc…

Fotos

A las 9 de la mañana a punto de empezar el Arduino Day en Logroño.

Charla “IoT. Conectando cosas con Arduino” de Enrique Crespo

Charla “Seguridad en IoT” de Diego Soto:

Tomando un café antes de seguir con los talleres.

Taller “IoT. Conectando cosas con Arduino” de Enrique Crespo

Arduino Intel Edison + Intel IoT Analytics

Este artículo está motivado por mi asistencia al hackathon celebrado entre el 25 y 27 de marzo de 2017 en el World Hosting Days en Europa Park, Rust, Alemania. Más información: http://worldhostingdays.com/global/

Datos del hackathon: http://worldhostingdays.com/global/side-event/cloud-community-hackathon

En mi caso fui a participar en el proyecto conjunto de 1and1 e Intel donde el objetivo era comprobar las características del microprocesador Intel Edison manejando sensores y actuadores en combinación con el motor de analíticas de Intel para IoT hospedado en el cloud de 1and1. Los detalles del proyecto pueden verse en: http://worldhostingdays.com/global/project/1and1

El kit de herramientas que dispusimos fue:

  • Cloud infrastructure
    • Open IoT Connector hosted by 1&1 which connects devices to the cloud. http://streammyiot.com/
    • 1&1 Analytic Cloud Environment with MQTT broker and Node.js.

También dispusimos de la API para interactuar con el cloud de 1&1:

Arduino Edison

Intel Edison es un módulo de computación de Intel que es posible usarlo con el formato de Arduino. Está centrado en el IoT y wearables. Tiene un sistema linux yocto embebido pero es capaz de ejecutar los Sketch de Arduino que al ser compilados se guardan en un directorio del sistema de ficheros y es ejecutado. También dispone de conectividad Wi-Fi y Bluetooth.

El Intel Edison es un pequeño módulo desarrollado por Intel y orientado a la electrónica embebida incluso en proyectos comerciales. Es una pequeña placa llena de posibilidades y no es para menos ya que en su diminuto tamaño encontramos un Intel® Atom™ SoC dual-core con WiFi, Bluetooth LE integrado. Una funcionalidad importante es que dispone de un conector genérico de 70 pines para poder conectar todo tipo de periféricos y placas desarrolladas para esta plataforma.

Está pensado para aplicaciones de bajo consumo pero gracias al amplio soporte de software proporcionado por Intel, puede ser utilizado en poco minutos incluso por principiantes en electrónica.

Web Intel Edison:

Wikipedia: https://en.wikipedia.org/wiki/Intel_Edison

El kit de Arduino Edison incluye los pines hembra de Arduino, que permite conectar la mayoría de placas shields de Arduino al módulo de forma nativa. Todos los pines del 0 al 13 (junto con AREF y GND), pines analógicos 0 a 5, alimentación, ICSP y el UART están en el mismo sitio que el Arduino UNO R3 para guardar la máxima compatibilidad.  Además la placa del Intel Edison incluye un zócalo para tarjetas de memoria Micro SD, un conector Micro USB conectado al UART2 y un conector estándar USB 2.0. En la documentación se dispone de librerías para gestionar los pines de Arduino disponibles.

Arduino Edison HW guide: http://www.intel.com/content/dam/support/us/en/documents/edison/sb/edison-arduino-hardware-guide.pdf

Arquitectura Intel Edison (microprocesador):

  • Dual-core Intel® Atom™ processor at 500 MHz
  • 1 GB DDR3 RAM, 4 GB eMMC flash
  • 40 multiplexed GPIO interfaces
  • Bluetooth* 4.0, Wi-Fi*
  • Yocto Project*, Brillo*
  • Arduino* compatible
  • Open-source software development environment
  • C/C++, Python*, Node.js*, HTML5, JavaScript*

Características: http://download.intel.com/support/edison/sb/edison_pb_331179002.pdf

Arduino Edison: https://www.arduino.cc/en/ArduinoCertified/IntelEdison

Características de la placa:

  • 20 digital input/output pins, including 6 pins as PWM outputs.
  • 6 analog inputs.
  • 1 UART (Rx/Tx).
  • 1 I2C.
  • 1 ICSP (In-system programming ) 6-pin header (SPI).
  • Micro USB device connector OR (via mechanical switch) dedicated standard size USB host Type-A connector.
  • Micro USB device (connected to UART).
  • SD card connector.
  • DC power jack (7 to 15VDC input).

Documentación: https://software.intel.com/es-es/iot/hardware/edison/documentation

Intel ha desarrollado sus propias herramientas para programar el microprocesador Intel Edison, que ofrece más potencia a la hora de programarlo que con el lenguaje de Arduino y su IDE, pero tiene la desventaja de tener que aprender su SDK. El SDK puede encontrarse en descargas: https://software.intel.com/es-es/iot/hardware/edison/downloads

Al igual que el Arduino UNO el kit de Intel® Edison para Arduino hace posible tener 20 pines digitales de entrada/salida, 6 de los cuales pueden usarse como entradas analógicas. El Intel® Edison tiene 4 salidas PWM que pueden configurarse mediante jumpers para usarse en cualquiera de los 6 pines que soportan PWM en el Arduino UNO (pins 3, 5, 6, 9, 10, or 11).

Los pines de entrada/salida (I/O) y los analógicos pueden ser configurados para funcionar a 5V o 3.3V. Los pines en modo salida soportan hasta 24mA a 3.3V y 32mA a 5V

Arquitectura:

Para usar el microprocesador Intel Edison, hay también disponible una breakout board:

Breakout board: http://download.intel.com/support/edison/sb/edisonbreakout_hg_331190006.pdf

Esta breakout board ha sido diseñada para exponer los pines nativos a 1.8V del Intel® Edison y poder trabajar con ella. La placa se compone de una fuente de alimentación, una cargador de batería, USB OTG power switch, UART to USB bridge, USB OTG port y I/O header.

Pinout: http://www.intel.com/content/www/us/en/support/boards-and-kits/000006090.html

Hardware Guide: http://download.intel.com/support/edison/sb/edisonmodule_hg_331189004.pdf

Compra:

Comparativa de Intel Edison:

Edison no es una raspberry Pi, principalmente porque no hay una salida de video en Edison. Aquí hay una buena comparativa: https://www.sparkfun.com/news/1603

Más información de Intel Edison en: https://www.arduino.cc/en/ArduinoCertified/IntelEdison

Arduino Edison tiene una distribución de Yocto Linux corriendo en su interior. Más información sobre el proyecto Yocto en: https://en.wikipedia.org/wiki/Yocto_Project

Programación Arduino Edison

Arduino Edison es posible programarlo con el IDE de Arduino y es posible desde el sketch de Arduino hacer peticiones al kernel de Linux con llamadas al sistema.

Enlaces imprescindibles para empezar con Arduino Edison:

Para poder usar Arduino Intel Edison con el IDE de Arduino, es necesario instalar el paquete para las Intel i686 Boards.

Los entornos de desarrollo para Intel Edison son:

IDEs para hardware Intel: https://software.intel.com/es-es/iot/tools-ide/ide

Development environment:

Supported sensors:

Sensor kits:

Intel XDK IoT Edition (programar con node.js):

Procedure to Autostart the Arduino Sketch on Intel® Edison: https://software.intel.com/en-us/blogs/2015/08/01/procedure-to-autostart-the-arduino-sketch-on-edison

Modo AP en Intel Edison: https://software.intel.com/en-us/getting-started-with-ap-mode-for-intel-edison-board

Ejemplos de uso de Arduino Edison:

Arduino Galileo

Existen otros Arduinos con microprocesadores Intel, uno de ellos es el más reciente Arduino 101 que es el mismo concepto que Arduino UNO, pero con concepto de SoC del Arduino Edison también existe el Arduino Galileo. Este es un Arduino anterior y con menos capacidades que el Edison.

Para usar el Arduino Galileo con el IDE de Arduino es necesario instalarse el el paquete para las Intel i586 Boards.

Arduino Galileo (retirado): https://www.arduino.cc/en/ArduinoCertified/IntelGalileo

Arduino Galileo Gen2: https://www.arduino.cc/en/ArduinoCertified/IntelGalileoGen2

Web Intel: https://software.intel.com/es-es/iot/hardware/galileo

Wikipedia: https://en.wikipedia.org/wiki/Intel_Galileo

Arduino Galileo también usa Yocto Linux.

Edison vs Galileo:

Plataforma Cloud IoT de Intel

Una vez aclarado qué es Arduino Edison y que ya sabemos que podemos programarlo como cualquier otro Arduino, veamos cómo combinar nuestra experiencia con Arduino con la plataforma cloud IoT de Intel para hacer proyectos de IoT.

Intel al igual que otras muchas empresa ha desarrollado sus recursos para IoT. La Web de recursos para IoT de Intel: https://software.intel.com/es-es/iot/home

Visión de Intel en el IoT: http://www.intel.la/content/www/xl/es/internet-of-things/overview.html

La plataforma cloud IoT de Intel está disponible en http://streammyiot.com/ y es posible registrarse y usarla de forma gratuita.

Intel® IoT Analytics Platform:

  • Provides seamless Device-to-Device and Device-to-Cloud communication.
  • Ability to run rules on your data stream that trigger alerts based on advanced analytics.
  • Foundational tools for collecting, storing, and processing data in the cloud.
  • Free for limited and noncommercial use.

Con los datos recogidos con esta plataforma luego es posible extraerlos, transformarnos, cargarlos y utilizarlos. Cuando son enormes cantidades es cuando se usa el big data: https://software.intel.com/en-us/bigdata

Esta plataforma IoT está alojado el los servidores cloud de 1&1: https://www.1and1.com/dynamic-cloud-server

Para empezar a usar esta plataforma tenemos toda la documentación en:

Tutorial excelente para uso de Arduino edison con Intel IoT Analytics: http://www.instructables.com/id/Intel-IoT-Analytics-Dashboard/

Otro tutorial: https://medium.com/@shonsh/visualizing-sensor-data-using-intel-iot-analytics-d2d1de9ae118#.5ktwz5lyl

Otras plataformas de cloud analytics con las que conectar el Arduino Edison: https://software.intel.com/en-us/iot/cloud-analytics:

Uso de la Plataforma Intel IoT Analytics

Una vez aprendidos los conceptos vamos a ponerlos en práctica conectando el Arduino Edison a la plataforma Intel IoT Analytics, para ellos comencemos a recoger datos.

La programación del HW IoT tiene dos partes: recoger datos de los sensores y la de enviar los datos. Para empezar primero debemos configurar una cuenta de IoT analytics y luego seguir con la conectividad.

Pasos a dar para poner a subir datos a la plataforma:

IMPORTANTE

Para entender la estructura en que los datos se guardan en la plataforma leer: https://github.com/enableiot/iotkit-api/wiki/Api-Home#data-structure

Una vez instalado todo vemos el dashboard:

Para mandar datos desde Arduino Edison a la plataform Intel IoT Analytics podemos hacerlo vía HTTP o MQTT. En este caso vamos a usar HTTP.

Disponemos de un repositorio en github con muchos ejemplo para el IoT Kit Intel: https://github.com/enableiot/iotkit-samples

Y un muy buen ejemplo de uso de la API client for python lo tenemos en: https://github.com/enableiot/iotkit-samples/blob/master/api/python/iotkit_client.py

Estas mismas llamadas para guardar datos en la plataforma usando la API se pueden aplicar a Arduino para que guarde los datos.

Para obtener el token de usuario: https://github.com/enableiot/iotkit-api/wiki/Authorization

POST /v1/api/auth/token HTTP/1.1
Host: 109.228.56.48
Content-Type: application/json

{
    "username": "aprendiendoarduino@gmail.com",
    "password": “password"
}

 

Dar de Alta un dispositivo: https://github.com/enableiot/iotkit-api/wiki/Device-Management

PUT /v1/api/accounts/4d6398a7-49aa-45f0-8b53-54896778a736/devices/90-A2-DA-10-B3-BD/activation HTTP/1.1
Host: 109.228.56.48
Authorization: Bearer APIKEY
Content-Type: application/json

{ 
     "activationCode": "activationcode"
}

Añadir un componente a un dispositivo: https://github.com/enableiot/iotkit-api/wiki/Device-Management#add-a-component-to-a-device

POST /v1/api/accounts/4d6398a7-49aa-45f0-8b53-54896778a736/devices/90-A2-DA-10-00-00/components HTTP/1.1
Host: 109.228.56.48
Authorization: Bearer APIKEY
Content-Type: application/json
Cache-Control: no-cache

{ 
	"cid": "436e7e74-6771-4898-9057-26932f5eb7e1",
	"name": "temperatura",
	"type": "temperature.v1.0"
}

Código Arduino para poner en un actuador y que reaccione: https://github.com/enableiot/iotkit-samples/blob/master/arduino/IoTkit/examples/IoTKitActuationExample/IotKitActuationExample.ino

Data API para envío y recepción de datos: https://github.com/enableiot/iotkit-api/wiki/Data-API

Rule Management: https://github.com/enableiot/iotkit-api/wiki/Rule-Management

Alert Management: https://github.com/enableiot/iotkit-api/wiki/Alert-Management

Error Handling: https://github.com/enableiot/iotkit-api/wiki/Error-Handling

Hackathon WHD

Ahora que ya sabemos como manejar la plataforma y como mandar los datos desde el Arduino Edison, en el Hackathon del WHD planteamos un proyecto de una planta solar inteligente que en función de la demanda energética, es capaz de activar o desactivar paneles monitorizados en tiempo real y detectar cualquier incidencia o avería, dentro del proyecto de Intel y 1&1: http://worldhostingdays.com/global/project/1and1

El material usado en el hackathon fue:

Repositorio con documentación y ejemplo para el hackathon del WHD: https://github.com/srware/WHD.global-2017

Repositorio de todo el trabajo hecho en el hackathon: https://github.com/jecrespo/aprendiendoarduino-iot/tree/master/04-Intel%20IoT%20Analytics

El grupo de Españoles trabajando con Arduino:

En el hackathon:

Para conectar a red Arduino Edison:

Cómo cargar un programa en el Edison: https://www.arduino.cc/en/Guide/IntelEdison

Comandos interesantes en yocto linux

  • configure_edison –help
  • iotkit-admin
  • systemctl stop iotkit-agent
  • systemctl start iotkit-agent
  • systemctl status iotkit-agent -l
  • iotkit-admin catalog
  • iotkit-admin register
  • iotkit-admin observation

Dentro del Arduino Edison debe estar instalada la versión de yocto con el iotkit, que es un agente al que puede llamar para hacer determinadas tareas en la plataforma IoT de Intel. Explicación: “The agent is a program that runs as a daemon on the device, listening for simple messages from other processes and handling the necessary message formatting and security to send observations to the cloud. The agent comes with another program, iotkit-admin, which provides many utility functions, such as testing the network, activating a device, registering time series, and sending test observations. The agent is controlled by systemctl, the systemd service manager.”

Cuando cargamos un sketch de Arduino en el Edison, este se pierde después de reiniciar la placa. Para que funcione en el reinicio poner este fichero en el systemctl: /etc/systemd/system/arduino-sketch.service

Contenido del fichero:

systemctl daemon-reload
systemctl status arduino-sketch.service
systemctl enable arduino-sketch.service

Para resolver los problemas con el timezone debo realizar estos pasos

  • timedatectl status
  • ls -l /etc/localtime
  • cd /usr/share/zoneinfo (ver dónde está configurado)
  • timedatectl set-timezone Europe/Paris (y pongo esta)

Para ver el catálogo: iotkit-admin catalog

Para registrar componentes:

  • iotkit-admin register panel_temperature temperature.v1.1
  • iotkit-admin register solar_radiation radiation.v1.0
  • iotkit-admin register onoffButton button.v1.1
  • iotkit-admin register alarm powerswitch.v1.0
  • iotkit-admin register status powerswitch.v1.0

Para cambiar protocolo:

  • iotkit-admin protocol ‘mqtt’
  • iotkit-admin protocol ‘rest+ws’

Con estos detalles que aprendimos de la gente de Intel que estuvo en el hackathon pudimos hacer nuestro proyecto de una planta solar conectada y el resultado se puede ver en https://github.com/jecrespo/aprendiendoarduino-iot/tree/master/04-Intel%20IoT%20Analytics

Vídeo del resultado:

Y nuestra presentación: https://www.slideshare.net/jecrespo/whd-global-2017-smart-power-plant

Nuestro proyecto: https://www.1and1.com/cloud-community/develop/hackathon-projects/11-and-intel/smart-solar-power-plant/

Y finalmente nuestro proyecto fue presentado en el WHD:

Más fotos y publicaciones de

Durante el hackathon se presentó la cloud community de 1&1: www.1and1.com/cloud-community

Servicios IoT

Esta conferencia sobre IoT con Arduino fue expuesta el 1 de abril de 2017 con motivo del Arduino Day. Puedes ver el video de la conferencia completa en http://www.innovarioja.tv/index.php/video/ver/1661


Las plataformas mismas nos pueden ofrecer diferentes clases de servicios para los datos como visualización de datos, descargas, API para obtener los datos, alertas, etc…

Algunos servicios que podemos encontrar:

  • Almacenamiento de datos
  • Gestión de dispositivos
  • Visualización de datos (Visual Analytics)
  • Descarga de datos
  • API REST para interactuar con la plataforma
  • Notificaciones
  • Alertas/Alarmas
  • Reglas
  • SDK
  • Interacción con otras plataformas
  • Análisis de datos (Machine Learning)
  • Open data

Una plataforma nos puede permitir:

  • Automatizar informes de trabajo, cuadros de mando, etc… Los datos recogidos y guardados genera informes automáticamente de forma periódica o en tiempo real (por ejemplo de la producción) y son enviados.
  • Monitorización en Tiempo real de flotas o del estado de una planta
  • Avisos precoces para mantenimientos predictivos.
  • Control remoto de instalaciones.
  • Eficiencia energética.
  • Automatización de procesos.
  • Análisis de datos (data mining, etc…) para aprendizaje automático.
  • Business intelligence (detectar problemas comunes, medir cuellos de botella, etc…) y ayudar en el mantenimiento predictivo.
  • Integrar con el software corporativo. ERP, CRM, GMAO (Gestión del Mantenimiento Asistido por Ordenador), CMMS.

Plataformas IoT

Esta conferencia sobre IoT con Arduino fue expuesta el 1 de abril de 2017 con motivo del Arduino Day. Puedes ver el video de la conferencia completa en http://www.innovarioja.tv/index.php/video/ver/1661


Las plataformas IoT son plataformas SW que reciben los datos datos recogidos por nuestros sensores y luego son enviados por los microcontroladores. Pueden ser plataformas de terceros o plataformas propias desarrolladas por nosotros.

Plataformas SW: tratar los datos recogidos por nuestros sensores, almacenarlos y ofrecer otros servicios.

Estas plataformas tienen un HW y el SW que pueden usar estas tecnologías:

Listado de plataformas IoT: http://www.monblocnotes.com/node/1979

Algunas plataformas destacables:

Y muchas más…

ThingSpeak

ThingSpeak es un plataforma de Internet of Things (IoT) que permite recoger y almacenar datos de sensores en la nube y desarrollar aplicaciones IoT. Thingspeak también ofrece aplicaciones que permiten analizar y visualizar tus datos en MATLAB y actuar sobre los datos. Los datos de los sensores pueden ser enviados desde Arduino, Raspberry Pi, BeagleBone Black y otro HW.

Thingspeak está en colaboración con Mathworks https://en.wikipedia.org/wiki/MathWorks que es la empresa de Matlab y Simulink entre otros.

Ejemplo para enviar datos a thinkspeak con Arduino: http://community.thingspeak.com/tutorials/arduino/send-data-to-thingspeak-with-arduino/

Documentación: https://thingspeak.com/docs

Repositorio: https://github.com/iobridge/thingspeak

Canal público de Thingspeak: https://thingspeak.com/channels/242341

Carriots

Carriots es una Plataforma como Servicio (PaaS en sus siglas en inglés) diseñada para proyectos del Internet de las Cosas (IoT) y de Máquina a Máquina (M2M)

Más información: https://www.carriots.com/que-es-carriots

Carriots es una plataforma IoT creada en España.

  • Cree potentes productos y servicios IoT.
  • Conecte fácilmente “sus cosas” al Internet de las Cosas.
  • Construya sus apps inteligentes con Carriots en 5 pasos.

Pasos:

  • Conectar Dispositivos
  • Recopilar Datos
  • Gestionar Dispositivos y Datos
  • Construir APPs

Casos de uso: https://www.carriots.com/casos-de-uso

Principales ventajas

  • Listo para empezar a desarrollar.
  • Minimizar tiempo de desarrollo.
  • Gestión simplificada de múltiples proyectos: Arquitectura de 7 niveles
  • Amplia variedad de APIs y potente SDK: REST API y SDK
  • Escalabilidad inmediata
  • Inicio gratuito y pago por uso.
  • Alojamiento simplificado: Oferta PaaS para escalabilidad fiable.

Ejemplos:

Temboo

Temboo es una plataforma de IoT que nos permite conectar fácilmente mediante una API un Arduino con y hacer de intermediario con aplicaciones de terceros. Es una plataforma colaboradora con Arduino.

La librería Temboo para arduino está incluida en el IDE de Arduino dentro del Arduino Library Manager.

Web: https://temboo.com

Tembo + Arduino:

Temboo funciona con choreos que son APIs de conexión con terceros como por ejemplo la API de weather de Yahoo: https://temboo.com/library/Library/Yahoo/Weather/

Temboo tiene un sistema de generación de código para Arduino, pero es limitado y en su lugar puede usarse la API REST. Solo vale para unos pocos modelos de Arduino.

Temboo no almacena solo ejecuta choreos que usa interconexión con terceros: https://temboo.com/restapi/reference

Temboo permite usar varios protocolos:

Adafruit IO

Otra plataforma IoT con muy buena integración con Arduino y su funcionalidad más potente es la fácil creación de dashboards. La usaremos en el taller para practicar con MQTT.

Web https://io.adafruit.com

Tutorial: https://learn.adafruit.com/adafruit-io/overview

API documentation: https://io.adafruit.com/api/docs/#!/v2

Plataformas privadas

Existen plataformas que puedes instalar en tu propio servidor físico, en un servidor en la nube o incluso en un hosting compartido y también en una raspberry Pi.

Y también es posible programar tu propia plataforma como http://www.aprendiendoarduino.com/servicios/ montada sobre un hosting compartido y hecho con HTML5, PHP y javascript.

Protocolos IoT

Esta conferencia sobre IoT con Arduino fue expuesta el 1 de abril de 2017 con motivo del Arduino Day. Puedes ver el video de la conferencia completa en http://www.innovarioja.tv/index.php/video/ver/1661


Protocolos de comunicación, con los que comunicar el HW con el SW

  • API REST/HTTP

  • REST + Websockets

  • MQTT (Message Queue Telemetry Transport).
    Está enfocado al envío de datos en aplicaciones donde se requiere muy poco ancho de banda. Además, sus características le permiten presumir de tener un consumo realmente bajo así como precisar de muy pocos recursos para su funcionamiento.
    Estas características han hecho que rápidamente se convierta en un protocolo muy empleado en la comunicación de sensores y, consecuentemente, dentro del Internet de las Cosas.

Comparativa de protocolos: https://www.slideshare.net/paolopat/mqtt-iot-protocols-comparison

IoT protocols: https://www.postscapes.com/internet-of-things-protocols/