Archivo de la categoría: Arduino

Redes LPWAN/LoRa

Redes LPWAN: https://www.aprendiendoarduino.com/2018/03/05/redes-lpwan/

Arduino y LoRaWAN: https://www.aprendiendoarduino.com/2018/03/07/arduino-y-lorawan/

Demo LoRa con Moteino: https://www.aprendiendoarduino.com/2018/03/07/demo-lora-con-moteino/

Anuncios

WiFi

El wifi es un mecanismo de conexión de dispositivos electrónicos de forma inalámbrica. Los dispositivos habilitados con wifi como Arduino, pueden conectarse a internet a través de un punto de acceso de red inalámbrica.

Wi-Fi es una marca de la Alianza Wi-Fi, la organización comercial que adopta, prueba y certifica que los equipos cumplen con los estándares 802.11 relacionados a redes inalámbricas de área local.

  • Los estándares IEEE 802.11b, IEEE 802.11g e IEEE 802.11n disfrutan de una aceptación internacional debido a que la banda de 2,4 GHz está disponible casi universalmente, con una velocidad de hasta 11 Mbit/s, 54 Mbit/s y 300 Mbit/s, respectivamente.
  • En la actualidad ya se maneja también el estándar IEEE 802.11ac, conocido como WIFI 5, que opera en la banda de 5 GHz y que disfruta de una operatividad con canales relativamente limpios. La banda de 5 GHz ha sido recientemente habilitada y, además, no existen otras tecnologías (Bluetooth, microondas, ZigBee) que la estén utilizando, por lo tanto existen muy pocas interferencias. Su alcance es algo menor que el de los estándares que trabajan a 2,4 GHz (aproximadamente un 10 %), debido a que la frecuencia es mayor (a mayor frecuencia, menor alcance).

Existen otras tecnologías inalámbricas como Bluetooth que también funcionan a una frecuencia de 2,4 GHz, por lo que puede presentar interferencias con la tecnología wifi. Debido a esto, en la versión 1.2 del estándar Bluetooth actualizó su especificación para que no existieran interferencias con la utilización simultánea de ambas tecnologías, además se necesita tener 40 000 kbit/s.

Existen varias alternativas para garantizar la seguridad de estas redes. Las más comunes son la utilización de protocolos de cifrado de datos para los estándares wifi como el WEP, el WPA, o el WPA2 que se encargan de codificar la información transmitida para proteger su confidencialidad, proporcionados por los propios dispositivos inalámbricos. La mayoría de las formas son las siguientes:

  • WEP, cifra los datos en su red de forma que sólo el destinatario deseado pueda acceder a ellos. Los cifrados de 64 y 128 bits son dos niveles de seguridad WEP. WEP codifica los datos mediante una “clave” de cifrado antes de enviarlo al aire. Este tipo de cifrado no está recomendado debido a las grandes vulnerabilidades que presenta ya que cualquier cracker puede conseguir sacar la clave, incluso aunque esté bien configurado y la clave utilizada sea compleja.
  • WPA: presenta mejoras como generación dinámica de la clave de acceso. Las claves se insertan como dígitos alfanuméricos.
  • WPA2 (estándar 802.11i): que es una mejora relativa a WPA. En principio es el protocolo de seguridad más seguro para Wi-Fi en este momento. Sin embargo requieren hardware y software compatibles, ya que los antiguos no lo son. Utiliza el algoritmo de cifrado AES (Advanced Encryption Standard).
  • IPSEC (túneles IP) en el caso de las VPN y el conjunto de estándares IEEE 802.1X, que permite la autenticación y autorización de usuarios.
  • Filtrado de MAC, de manera que solo se permite acceso a la red a aquellos dispositivos autorizados. Es lo más recomendable si solo se va a usar con los mismos equipos, y si son pocos.
  • Ocultación del punto de acceso: se puede ocultar el punto de acceso (router) de manera que sea invisible a otros usuarios.

Dispositivos de distribución o de red en wifi son:

  • Los puntos de acceso son dispositivos que generan un set de servicio, que podría definirse como una red wifi a la que se pueden conectar otros dispositivos. Los puntos de acceso permiten, en resumen, conectar dispositivos de forma inalámbrica a una red existente. Pueden agregarse más puntos de acceso a una red para generar redes de cobertura más amplia, o conectar antenas más grandes que amplifiquen la señal.
  • Los repetidores inalámbricos son equipos que se utilizan para extender la cobertura de una red inalámbrica, éstos se conectan a una red existente que tiene señal más débil y crean una señal limpia a la que se pueden conectar los equipos dentro de su alcance. Algunos de ellos funcionan también como punto de acceso.
  • Los enrutadores inalámbricos son dispositivos compuestos, especialmente diseñados para redes pequeñas (hogar o pequeña oficina). Estos dispositivos incluyen, un enrutador (encargado de interconectar redes, por ejemplo, nuestra red del hogar con Internet), un punto de acceso (explicado más arriba) y generalmente un conmutador que permite conectar algunos equipos vía cable (Ethernet y USB). Su tarea es tomar la conexión a Internet, y brindar a través de ella acceso a todos los equipos que conectemos, sea por cable o en forma inalámbrica.

Los estándares 802.11b y 802.11g utilizan la banda de 2,4 GHz. En esta banda se definieron 11 canales utilizables por equipos wifi, que pueden configurarse de acuerdo a necesidades particulares. Sin embargo, los 11 canales no son completamente independientes (un canal se superpone y produce interferencias hasta un canal a 4 canales de distancia). El ancho de banda de la señal (22 MHz) es superior a la separación entre canales consecutivos (5 MHz), por eso se hace necesaria una separación de al menos 5 canales con el fin de evitar interferencias entre celdas adyacentes, ya que al utilizar canales con una separación de 5 canales entre ellos (y a la vez cada uno de estos con una separación de 5 MHz de su canal vecino) entonces se logra una separación final de 25 MHz, lo cual es mayor al ancho de banda que utiliza cada canal del estándar 802.11, el cual es de 22 MHz. Tradicionalmente se utilizan los canales 1, 6 y 11, aunque se ha documentado que el uso de los canales 1, 5, 9 y 13 (en dominios europeos) no es perjudicial para el rendimiento de la red.

Esta asignación de canales usualmente se hace sólo en el Punto de acceso, pues los “clientes” automáticamente detectan el canal, salvo en los casos en que se forma una red “Ad-Hoc” o punto a punto cuando no existe punto de acceso.

Canales en 802.11 (wifi) frente a 802.15.4 (zigbee):

Wifi 5G

La tecnología Wi-Fi utiliza dos bandas de frecuencias según el estándar al que nos refiramos:

  • 2,4 GHz: 802.11b, 802.11g y 802.11n
  • 5 GHz: 802.11a, 802.11n y 802.11ac

Banda 2.4 GHz: En España se pueden utilizar los canales 1-13; el canal 14 es el único prohibido, solamente se puede utilizar en Japón. La potencia máxima es siempre 20 dBm.

Banda 5 GHz: En España se permite el uso de los canales 36-64 y 100-140, al igual que en el resto de Europa. La potencia máxima depende del escenario, pero generalmente sería 23 dBm y 30 dBm respectivamente para equipos nuevos con marcado CE a partir de 2015 (ETSI EN 301 893 V1.8.1).

802.11ac:

Wifi en Arduino

Wifi: Hay múltiples formas de conectar Arduino a internet mediante wifi:

Wifi en Raspberry Pi

Raspberry Pi dispone de Wifi integrada en los siguientes modelos:

  • Model 3: 802.11b/g/n single band 2.4 GHz wireless, Bluetooth 4.1 BLE
  • Model 3+: 802.11b/g/n/ac dual band 2.4/5 GHz wireless, Bluetooth 4.2 LS BLE

Configuración WiFi desde Desktop: https://www.raspberrypi.org/documentation/configuration/wireless/desktop.md

Configuración WiFi desde CLI: https://www.raspberrypi.org/documentation/configuration/wireless/wireless-cli.md

En Raspbian, el fichero de configuración de WiFi es: /etc/wpa_supplicant/wpa_supplicant.conf

Configuración headless: https://www.raspberrypi.org/documentation/configuration/wireless/headless.md

Configurar Raspberry Pi como un Access Point: https://www.raspberrypi.org/documentation/configuration/wireless/access-point.md

Configuración WiFi en Raspberry Pi: https://www.luisllamas.es/raspberry-pi-wifi/

Más de configuración wifi en Raspberry Pi:

Gateways IoT

Un Gateway IoT es un dispositivo físico o un programa de software que sirve como punto de conexión entre la nube y los controladores, sensores y dispositivos inteligentes. Todos los datos que se mueven a la nube, o viceversa, pasan por el gateway, que puede ser un dispositivo de hardware dedicado o un programa de software. Un gateway IoT también puede denominarse pasarela inteligente o nivel de control.

Algunos sensores generan decenas de miles de puntos de datos por segundo. Una pasarela proporciona un lugar para preprocesar esos datos localmente en el borde antes de enviarlos a la nube. Cuando los datos se agregan, se resumen y se analizan tácticamente en el borde, se minimiza el volumen de datos que deben ser enviados a la nube, lo que puede tener un gran impacto en los tiempos de respuesta y en los costes de transmisión de la red.

Otra ventaja de una pasarela de IoT es que puede proporcionar seguridad adicional para la red de IoT y los datos que transporta. Dado que el gateway gestiona información que se mueve en ambas direcciones, puede proteger los datos que se mueven hacia la nube de fugas y dispositivos de IoT de ser comprometidos por ataques externos maliciosos con características tales como detección de manipulaciones, cifrado, generadores de números aleatorios de hardware y motores de cifrado.

La pasarela IoT desempeña un papel importante en la gestión de los dispositivos. Cada dispositivo (sensor/actuador) tiene un caso de uso diferente y emite mensajes a través de diferentes canales como Wifi, BLE, Zigbee, Ethernet, RF, LPWAN, LTE, etc. y el gateway realiza varias funciones como conectividad de dispositivos, traducción de protocolos, agregación, filtrado, correlación, seguridad, actualizaciones, administración y más. Se sitúa entre los dispositivos y la plataforma de nube.

Además un Gateway puede hacer conexión VPN segura entre localizaciones diferentes, permitiendo unir de forma segura diferentes puntos a través de Internet.

Routers y Gateways industriales inteligentes https://ewon.biz/es  

Hace no tantos años la conexión remota era por módem o por GSM con conexiones pto a pto. En la actualidad usamos internet para el telecontrol, pero es un problema el tema de la seguridad. Ya existen dispositivos como el router industrial eWON Flexy https://ewon.biz/es/productos/flexy modular que es servidor OPC UA y cliente openvpn, es muy potente para conectar y dar funcionalidades adicionales a unos autómatas.

eWON monta la VPN y al ser servidor modbus TCP y OPC UA, es posible acceder remotamente y de forma segura a los datos del autómata e integrarlo con datos de otras localizaciones.

Ejemplo Gateway LoRa:

Y el código: https://github.com/jecrespo/aprendiendoarduino-lora/blob/master/Demo_LoRa/rf95_server/rf95_server.ino

Programación de los Gateways IoT:

ESP8266 en IoT

Iniciación ESP8266

https://www.aprendiendoarduino.com/2018/01/23/video-iniciacion-a-esp8266-hardware/

Preparación IDE Arduino para ESP8266

https://www.aprendiendoarduino.com/2018/01/27/video-preparacion-ide-arduino-para-esp8266/

Primeros Pasos con ESP8266

https://www.aprendiendoarduino.com/2018/03/03/video-primeros-pasos-con-esp8266/

Conectar ESP8266 a Internet. WifiClient

https://www.aprendiendoarduino.com/2018/03/22/video-conectar-esp8266-a-internet-wificlient/

Mandar Datos a un Servidor con ESP8266

Vamos a conectar Arduino a un servidor y mandar datos para que los muestre en una gráfica. Mandar datos a https://www.aprendiendoarduino.com/servicios/datos/graficas.html

Conexión:

Usar este código en Arduino: https://github.com/jecrespo/aprendiendoarduino-servicios/blob/master/arduino_code/data_logger_temperatura_DHCP_ESP/data_logger_temperatura_DHCP_ESP.ino

Ver los datos en:

Mandar Datos a una Raspberry Pi con ESP8266

Vamos a usar ESP8266 y mandar datos de luminosidad de la sala usando un LDR a una Raspberry Pi que tiene un servidor LAMP instalado.

Una fotorresistencia o LDR (por sus siglas en inglés “light-dependent resistor”) es un componente electrónico cuya resistencia varía en función de la luz.

Se trata de un sensor que actúa como una resistencia variable en función de la luz que capta. A mayor intensidad de luz, menor resistencia: el sensor ofrece una resistencia de 1M ohm en la oscuridad, alrededor de 10k ohm en exposición de luz ambiente, hasta menos de 1k ohm expuesto a la luz del sol. Aunque estos valores pueden depender del modelo de LDR.

El LDR actúa como una resistencia variable. Para conocer la cantidad de luz que el sensor capta en cierto ambiente, necesitamos medir la tensión de salida del mismo. Para ello utilizaremos un divisor de tensión, colocando el punto de lectura para Vout entre ambas resistencias. De esta forma:

Dónde Vout es el voltaje leído por el PIN analógico del ESP8266 y será convertido a un valor digital, Vin es el voltaje de entrada (5v), R2 será el valor de la resistencia fija colocada (10k ohm generalmente) y R1 es el valor resistivo del sensor LDR. A medida que el valor del sensor LDR varía, obtendremos una fracción mayor o menor del voltaje de entrada Vin.

Instalación:

Más información https://www.luisllamas.es/medir-nivel-luz-con-arduino-y-fotoresistencia-ldr/

Crear una base de datos llamada “DatosArduino” con una tabla llamada “luminosidad” que tenga 4 campos: “id” auto incremental y sea el campo clave, “fecha” de  tipo timestamp y que se actualice al actualizar, un campo “arduino” de tipo entero y un campo “IntensidadLuminosa” que sea de tipo entero.

O con la query:

 

CREATE TABLE `luminosidad` (
 `id` int(11) NOT NULL,
 `fecha` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00' ON UPDATE CURRENT_TIMESTAMP,
 `arduino` int(11) NOT NULL,
 `IntensidadLuminosa` int(11) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

ALTER TABLE `luminosidad`
 ADD PRIMARY KEY (`id`);

ALTER TABLE `luminosidad`
 MODIFY `id` int(11) NOT NULL AUTO_INCREMENT;

Subir por FTP seguro los ficheros Graba_GET.php y Graba_POST.php a Raspberry Pi al directorio /var/www/html

Ejecutar en Arduino estos sketches para GET o POST para mandar cada 5 segundos el dato de luminosidad:

Ver en la web de phpmyadmin los datos que se están subiendo y descargar en formato csv los datos guardados en unos minutos.

NOTA: Para ver los errores de PHP activar en /etc/php/7.0/apache2/php.ini la línea:

  • Development Value: E_ALL

MQTT y ESP8266

Para trabajar con MQTT es interesante instalar primero en el ordenador un cliente como MQTT.fx para hacer debug: https://mqttfx.jensd.de/  

Para conseguir una comunicación MQTT con ESP8266 o Arduino, emplearemos una librería. Existen muchas disponibles gracias a la comunidad que existe alrededor de Arduino. Concretamente, nosotros emplearemos una de las más conocidas y la más estable y flexible, lo que facilita su uso en proyectos que queramos realizar donde intervengan Arduino y MQTT.

Dicha librería es Arduino Client for MQTT y nos provee de un sencillo cliente que nos permite tanto subscribirnos como publicar contenido usando MQTT. Internamente, usa la API de Arduino Ethernet Client lo que lo hace compatible con un gran número de ‘shields’ y placas como:

  • Arduino Ethernet
  • Arduino YUN
  • Arduino WiFi Shield
  • Intel Galileo/Edison
  • ESP8266

Web: https://pubsubclient.knolleary.net/

Instalar la librería mediante el gestor de librerías:

PubSubClient es una librería compatible con Arduino y ESP8266. Básicamente hace que nuestra placa se comporte como un cliente MQTT es decir, que podamos publicar mensajes y suscribirnos a un topic o varios para recibir mensajes. Da lo mismo si utilizas un Arduino o un ESP8266, el código es prácticamente el mismo. La diferencia reside en cómo nos conectamos a la red WiFi o Ethernet, cada placa utiliza su propia librería.

Github PubSubClient: https://github.com/knolleary/pubsubclient

Documentación: https://pubsubclient.knolleary.net/api.html

Enviando un mensaje a través del protocolo MQTT con Wemos D1 Mini

Vamos a partir de uno de los ejemplos que vienen dentro de la librería. Lo encontrarás en Archivo>Ejemplos>PubSubClient>mqtt_esp8266. Esta opción te abre el siguiente código: https://github.com/knolleary/pubsubclient/blob/master/examples/mqtt_esp8266/mqtt_esp8266.ino

Configurar el SSID y el password de la red. En mqtt_server poner la IP de la Raspberry Pi donde se ha instalado el broker Mosquitto.

NOTA: tener en cuenta que si usamos usuario y contraseña debemos usar connect (clientID, username, password) en lugar de connect (clientID) https://pubsubclient.knolleary.net/api.html#connect3   

Código: https://github.com/jecrespo/Curso-IoT-Open-Source/blob/master/mqtt_esp8266/mqtt_esp8266.ino

Este sketch publica un mensaje “hello world #x” consecutivo cada 2 segundos en el topic “outTopic” y se suscribe al topic “inTopic”. Además  cuando se recibe un mensaje se dispara la función callback que si es un 1 enciendo el led integrado y en caso contrario se desactiva.

Probando la aplicación MQTT con ESP8266 y Raspberry Pi

Por último nos queda probar todo el sistema. No te olvides de cargar el código en la placa con las modificaciones necesarias en cada sketch con SSID, password, IP servidor mosquitto, usuario mosquitto y contraseña mosquitto.

Desde mqtt.fx suscribirse a los topic “inTopic” y “outTopic” para recibir los cambios que se producen.

Más información:

Interesante sobre MQTT: http://hackaday.com/2016/06/02/minimal-mqtt-power-and-privacy/

MQTT y ESP8266 https://www.sparkfun.com/news/2111

MQTT

MQTT son las siglas de Message Queue Telemetry Transport y tras ellas se encuentra un protocolo ideado por IBM y liberado para que cualquiera podamos usarlo enfocado a la conectividad Machine-to-Machine (M2M).

MQTT fue creado por el Dr. Andy Stanford-Clark de IBM y Arlen Nipper de Arcom — ahora Eurotech — en 1999 como una forma rentable y confiable de conectar los dispositivos de monitoreo utilizados en las industrias del petróleo y el gas a servidores empresariales remotos. Cuando se les planteó el reto de encontrar la manera de enviar los datos de los sensores de los oleoductos en el desierto a sistemas SCADA externos (control de supervisión y adquisición de datos), decidieron utilizar una topología de publicación/suscripción basada en TCP/IP que se basaría en los eventos para mantener bajos los costos de transmisión de los enlaces satelitales.

Aunque MQTTT todavía está estrechamente asociado con IBM, ahora es un protocolo abierto que es supervisado por la Organización para el Avance de los Estándares de Información Estructurada (OASIS).

Web: http://mqtt.org/

Está enfocado al envío de datos en aplicaciones donde se requiere muy poco ancho de banda. Además, sus características le permiten presumir de tener un consumo realmente bajo así como precisar de muy pocos recursos para su funcionamiento.

Estas características han hecho que rápidamente se convierta en un protocolo muy empleado en la comunicación de sensores y, consecuentemente, dentro del Internet de las Cosas.

MQTT es un protocolo pensado para IoT que está al mismo nivel que HTTP o CoAP:

Comparativa MQTT y CoAP:

Un aspecto importante a tener en cuenta de los dispositivos IoT no es solamente el poder enviar datos al Cloud/Servidor, sino también el poder comunicarse con el dispositivo, en definitiva la bidireccionalidad. Este es uno de los beneficios de MQTT: es un modelo brokered, el cliente abre una conexión de salida al bróker, aunque el dispositivo esté actuando como Publisher o subscriber. Esto normalmente evita los problemas con los firewalls porque funciona detrás de ellos o vía NAT.

En el caso de que la comunicación principal se base en HTTP, la solución tradicional para enviar información al dispositivo sería HTTP Polling. Esto es ineficiente y tiene un coste elevado en aspectos de tráfico y/o energía. Una manera más novedosa de hacerlo sería con el protocolo WebSocket, que permite crear una conexión HTTP completa bidireccional. Esto actúa de canal socket (parecido al canal típico TCP) entre el servidor y el cliente. Una vez establecido, ya es trabajo del sistema escoger un protocolo para hacer un túnel sobre la conexión.

El Transporte de telemetría de cola de mensajes (MQTT) es un protocolo de código abierto que se desarrolló y optimizó para dispositivos restringidos y redes de bajo ancho de banda, alta latencia o poco confiables. Es un transporte de mensajería de publicación/suscripción que es extremadamente ligero e ideal para conectar dispositivos pequeños a redes con ancho de banda mínimo. El MQTT es eficiente en términos de ancho de banda, independiente de los datos y tiene reconocimiento de sesión continua, porque usa TCP. Tiene la finalidad de minimizar los requerimientos de recursos del dispositivo y, a la vez, tratar de asegurar la confiabilidad y cierto grado de seguridad de entrega con calidad del servicio.

El MQTT se orienta a grandes redes de dispositivos pequeños que necesitan la supervisión o el control de un servidor de back-end en Internet. No está diseñado para la transferencia de dispositivo a dispositivo. Tampoco está diseñado para realizar “multidifusión” de datos a muchos receptores. El MQTT es simple y ofrece pocas opciones de control. Las aplicaciones que usan MQTT, por lo general, son lentas en el sentido de que la definición de “tiempo real” en este caso se mide habitualmente en segundos.

Más información:

MQTT también es un protocolo que está cobrando mucha importancia en la industria (IIoT). MQTT (Message Queuing Telemetry Transport, ‘Cola de mensajes telemetría y transporte’) es un protocolo publicar/suscribir diseñado para SCADA. Se centra en un mínimo encabezado (dos bytes de cabeza) y comunicaciones confiables. También es muy simple. Tal como HTTP, la carga MQTT es específica para la aplicación, y la mayoría de las implementaciones usan un formato JSON personalizado o binario.

MQTT en PLCs: https://www.youtube.com/watch?v=aX20J-sLyKU

Comparativa MQTT y Modbus: http://inubo.es/noticia/comparativa-entre-mqtt-y-modbus-como-protocolos-iot

MQTT es interesante usarlo cuando el ancho de banda bajo y no conozca su infraestructura. Asegúrese de que su proveedor tenga un broker MQTT a quien le pueda publicar información, y siempre asegure la comunicación con TLS (Transport Layer Security, ‘seguridad en la capa de transporte’).

Por ejemplo, MQTT sería una buena opción para monitorizar y controlar los paneles solares. MQTT es un protocolo de publicación/suscripción con brokers de mensajes centrales. Cada panel solar puede contener un nodo IoT que publique mensajes de tensión, corriente y temperatura.

MQTT está diseñado para minimizar el ancho de banda, lo que lo convierte en una buena opción para el monitoreo satelital de la línea de transmisión, pero hay una trampa. La ausencia de metadatos en las cabeceras de los mensajes significa que la interpretación de los mensajes depende completamente del diseñador del sistema.

Para compensar las redes poco fiables, MQTT soporta tres niveles de Calidad de Servicio (QoS):

  • Disparar y olvidar (0) – Fire and Forget – At most once
  • Al menos una vez (1) – At least once
  • Exactamente una vez (2) – Exactly once

Si se solicita el nivel de calidad de servicio 1 ó 2, el protocolo gestiona la retransmisión de mensajes para garantizar la entrega. La calidad de servicio puede ser especificada por los clientes de publicación (cubre la transmisión del publicador al broker) y por los clientes suscriptores (cubre la transmisión de un broker a un suscriptor).

MQTT QoS 2 aumentará la latencia porque cada mensaje requiere dos handshake completos de ida y vuelta del remitente al receptor (cuatro en total del publicador al suscriptor).

En un patrón de publicación/suscripción es difícil saber la diferencia entre “Ha pasado mucho tiempo desde que supe de mi publicador” y “Mi publicador murió”. Ahí es donde entra en juego la Última Voluntad y el Testamento (LWT) de MQTT. Los clientes pueden publicar mensajes sobre temas específicos (por ejemplo, aisle15/rack20/panel5/FalloSensor) para que se entreguen si se desconectan sin enviar un mensaje de “desconexión”. Los mensajes se almacenan en el broker y se envían a cualquier persona que se haya suscrito al tema.

MQTT de un vistazo

  • Ancho de banda muy bajo
  • TCP/IP
  • Publicar/suscribir transferencia de mensajes
  • Topología de muchos a muchos a través de un broker central
  • Sin metadatos
  • Tres niveles de QoS
  • Última Voluntad y Testamento revela nodos desconectados

Las ventajas de usar el protocolo MQTT son:

  • Es asíncrono con diferentes niveles múltiples de calidad del servicio, lo que resulta ser importante en los casos donde las conexiones de Internet son poco confiables.
  • Envía mensajes cortos que se vuelven adecuados para las situaciones de un bajo ancho de banda.
  • No se requiere de mucho software para implementar a un cliente, lo cual lo vuelve fantástico para los dispositivos como Arduino con una memoria limitada.
  • Podemos cifrar los datos enviados y usar usuario y password para proteger nuestros envíos.

Si quisiera grabar en una BBDD con MQTT, un suscriptor a una serie de topis se encarga de grabar los datos cada vez que cambia un valor o cada cierto tiempo, por ejemplo con un script de python o ejecutando Node-RED en una máquina virtual o en el propio servidor (o Raspberry Pi) donde corre el briker (Mosquitto):

NodeRed no es más que un software que se instala en un nodo aunque se instale en el mismo servidor que el broker.

Cinco cosas a saber de MQTT: https://www.ibm.com/developerworks/community/blogs/5things/entry/5_things_to_know_about_mqtt_the_protocol_for_internet_of_things?lang=en

Buen artículo sobre MQTT: https://internetofthingsagenda.techtarget.com/definition/MQTT-MQ-Telemetry-Transport

Recursos MQTT:

Para ampliar información de MQTT en Arduino y Raspberry Pi:

Buenos artículos de MQTT en español:

Arquitectura MQTT

MQTT (Message Queue Telemetry Transport), un protocolo usado para la comunicación machine-to-machine (M2M) en el “Internet of Things”. Este protocolo está orientado a la comunicación de sensores, debido a que consume muy poco ancho de banda y puede ser utilizado en la mayoría de los dispositivos empotrados con pocos recursos (CPU, RAM, …).

Un ejemplo de uso de este protocolo es la aplicación de Facebook Messenger tanto para android y Iphone. La arquitectura de MQTT sigue una topología de estrella, con un nodo central que hace de servidor o “broker”. El broker es el encargado de gestionar la red y de transmitir los mensajes, para mantener activo el canal, los clientes mandan periódicamente un paquete (PINGREQ) y esperan la respuesta del broker (PINGRESP). La comunicación puede ser cifrada entre otras muchas opciones.

En esta forma de comunicación se desacoplan los clientes que publican (Publisher) de los que consumen los datos (Suscribers). Eso significa que los clientes no se conocen entre ellos unos publican la información y otros simplemente la consumen, simplemente todos tienen que conocer al message broker.

El desacoplamiento se produce en tres dimensiones:

  • En el espacio: El publicador y el suscriptor no tienen porqué conocerse.
  • En el tiempo: El publicador y el suscriptor no tienen porqué estar conectados en el mismo momento.
  • En la sincronización: las operaciones en cualquiera de los dos componentes no quedan interrumpidas mientras se publican o se reciben mensajes.

Es precisamente el broker el elemento encargado de gestionar la red y transmitir los mensajes.

Una característica interesante es la capacidad de MQTT para establecer comunicaciones cifradas lo que aporta a nuestra red una capa extra de seguridad.

La comunicación se basa en unos “topics” (temas), que el cliente que publica el mensaje crea y los nodos que deseen recibirlo deben subscribirse a él. La comunicación puede ser de uno a uno, o de uno a muchos.

Dentro de la arquitectura de MQTT, es muy importante el concepto “topic” o “tema” en español ya que a través de estos “topics” se articula la comunicación puesto que emisores y receptores deben estar suscritos a un “topic” común para poder entablar la comunicación. Este concepto es prácticamente el mismo que se emplea en colas, donde existen un publicadores (que publican o emiten información) y unos suscriptores (que reciben dicha información) siempre que ambas partes estén suscritas a la misma cola.

Este tipo de arquitecturas, lleva asociada otra interesante característica: la comunicación puede ser de uno a uno o de uno a muchos.

Un “topic” se representa mediante una cadena y tiene una estructura jerárquica. Cada jerarquía se separa con ‘/’.

Por ejemplo, “edificio1/planta5/sala1/raspberry2/temperatura” o “/edificio3/planta0/sala3/arduino4/ruido“. De esta forma se pueden crear jerarquías de clientes que publican y reciben datos, como podemos ver en la imagen:

De esta forma un nodo puede subscribirse a un “topic” concreto (“edificio1/planta2/sala0/arduino0/temperatura”)  o a varios (“edificio1/planta2/#”).

Existen dos comodines en MQTT para suscribirse a varios topics:

  • Multi-level Wildcard: # (se suscribe a todos los hijos bajo esa cola)
  • Single Level Wildcard: + (se suscribe solo a ese nivel)

Un carácter de tema especial, el carácter dólar ($), excluye un tema de cualquier suscripción de root wildcard. Normalmente, el $ se utiliza para transportar mensajes específicos del servidor o del sistema.

Ejemplos de Topics MQTT Válidos:

  • casa/prueba/topic
  • casa/+/topic
  • casa/#
  • casa/+/+
  • +/#
  • #

Explicación del comodín de single level:

Escalado MQTT

MQTT me permite gran escalabilidad. Añadir un nuevo Arduino o un suscriptor es muy sencillo dentro de la jerarquía vista

Con escalable me refiero a la capacidad que tiene un sistema para ser ampliado. Los sistemas de sensores en general, particularmente en nuestro caso hablamos del mundillo del Internet de las Cosas, se caracterizan por enviar muchos datos de pequeño tamaño en tiempo real ya que hay muchos sensores transmitiendo simultáneamente y cada breves periodos de tiempo, cuya información necesita ser consumida por otros elementos en tiempo real.

En una Arquitectura basada en Broker es fundamental evitar el SPOF (punto único de fallo).

En el contexto MQTT hay 2 estrategias principales:

  • Bridging: hace forward de mensajes a otro bróker MQTT. Es la solución de HiveMQ, Mosquitto, IBM MQ
  • Clustering: soportando añadido dinámico de nodos al cluster. Lo usa ActiveMQ, HiveMQ o RabbitMQ.

Cuando un sistema de estas características se empieza a saturar se bloquean las comunicaciones y se pierde la característica de “tiempo real”.

Hasta ahora, todos los sistemas que habíamos visto se basaban en un cliente que se comunicaba con un servidor. Si cualquier cliente se intenta comunicar con un servidor que está procesando tanta información que, en ese momento, no es capaz de trabajar con más contenido, el sistema entero fallará, o bien porque se satura y bloquea a nivel global o porque empieza a descartar aquella información que no puede procesar (lo que es inadmisible en muchos caso, imagina una alarma de Riesgo de Explosión en tu cocina porque se ha detectado una fuga de gas…).

Existen varias formas de abordar esta problemática pero, a día de hoy, una de las más empleadas es usar sistemas de colas donde se deja toda la información y el encargado de procesarla va “sacando” de esta cola la información. De esta manera, si ponemos más “encargados de procesamiento” son capaces de vaciar más rápido la cola si viésemos que está se está empezando a llenar y, de cara a los sensores, no sería necesario hacer ningún cambio, ya que ellos siempre envían al mismo sitio.

MQTT no hace exactamente lo mismo ya que, para empezar, no hay colas sino “topics” pero la filosofía es muy parecida, permitiendo a grandes sistemas operar con total fluidez y, junto con sus optimizaciones que buscan entre otras cosas reducir consumos y tamaños de trama para poder operar en elementos embebidos, es el motivo por el que es un protocolo tan empleado en comunicaciones M2M.

Además, nos permite una gestión de la seguridad razonablemente sencilla que facilita que nuestros sistemas se comporten de una forma más robusta.

MQTT será el nexo entre hardware (sensor) y todos los elementos típicos del mundo software (servidores, bases de datos, Big Data). En esta capa nos preocupamos de que la información llegue a un sistema que posteriormente se ocupa de distribuirlo entre las demás partes y nos da igual lo que haya a partir de ese momento y su tamaño. Puede que no tengamos nada más que una web de visualización o puede que tengamos un complejo sistema de Machine Learning y Big Data. Puede que seamos un particular enviando un dato de temperatura a un panel de visualización en su Raspberry o puede que seamos una multinacional que controla en tiempo real su producción de amoniaco a nivel global bajando y subiendo la carga de producción en sus diferentes fábricas según los costes de transporte y el consumo de sus diferentes centros de distribución. Nos es lo mismo a este nivel porque nosotros hacemos sólo una cosa y la hacemos bien: enviar datos de un dispositivo hardware a un sistema mucho mayor. Es lo que se llama microservicios que ha popularizado netflix (http://enmilocalfunciona.io/arquitectura-microservicios-1/)

MQTT Sobre Websockets

MQTTT es una arquitectura de publicación/suscripción que se desarrolla principalmente para conectar dispositivos con ancho de banda y potencia limitada a través de redes inalámbricas. Es un protocolo simple y ligero que corre sobre sockets TCP/IP o WebSockets.

MQTT sobre WebSockets puede ser asegurado con SSL. La arquitectura de publicación/suscripción se basa en eventos que permiten enviar mensajes a los dispositivos cliente. El broker MQTT es el punto central de comunicación, y se encarga de despachar todos los mensajes entre los remitentes y los destinatarios legítimos. Un cliente es cualquier dispositivo que se conecta al corredor y puede publicar o suscribirse a temas para acceder a la información.

Un tema contiene la información de enrutamiento para el broker. Cada cliente que quiere enviar mensajes publica sobre un tema determinado, y cada cliente que quiere recibir mensajes se suscribe a un tema determinado. El corredor entrega todos los mensajes con el tema correspondiente a los clientes apropiados.

Sólo necesitará ejecutar MQTTT en sockets web si desea publicar/suscribirse a mensajes directamente desde webapps.

Buena web para estar al día de MQTT: https://www.hivemq.com/blog/

Más información:

Para saber más sobre MQTT leer esta serie de Artículos:

Protocolo MQTT

MQTT está diseñado para requerir una sobrecarga mínima del protocolo para cada paquete con el fin de preservar el ancho de banda para los dispositivos embebidos con recursos limitados. Es un marco de trabajo realmente sencillo para la gestión de redes mesh de dispositivos habilitados para TCP.

Los mensajes MQTT se entregan asincrónicamente (“push”) a través de la arquitectura publish subscribe. El protocolo MQTTT funciona intercambiando una serie de paquetes de control MQTT de una manera definida. Cada paquete de control tiene un propósito específico y cada bit del paquete se crea cuidadosamente para reducir los datos transmitidos a través de la red.

Publish and subscribe:

MQTT specificaction: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

Una sesión MQTT se divide en cuatro etapas: conexión, autenticación, comunicación y terminación. Un cliente comienza creando una conexión TCP/IP con el broker utilizando un puerto estándar o un puerto personalizado definido por los operadores del broker. Al crear la conexión, es importante reconocer que el servidor puede continuar una sesión antigua si se le proporciona una identidad de cliente reutilizada.

Los puertos estándar son el 1883 para la comunicación no cifrada y el 8883 para la comunicación cifrada mediante SSL/TLS. Durante el handshake SSL/TLS, el cliente valida el certificado del servidor para autenticar el servidor.

MQTT es llamado un protocolo ligero porque todos sus mensajes tienen una pequeña huella de código. Cada mensaje consta de una cabecera fija, una cabecera variable opcional, una carga útil de mensaje limitada a 256 MB de información y un nivel de calidad de servicio (QoS).

MQTTT soporta BLOBS (Binary Large Object) de mensajes de hasta 256 MB de tamaño. El formato del contenido es específico de la aplicación. Las suscripciones de temas se realizan utilizando un par de paquetes SUBSCRIBE/SUBACK. La anulación de la suscripción se realiza de forma similar utilizando un par de paquetes UNSUBSCRIBE/UNSUBACK.

Durante la fase de comunicación, el cliente puede realizar operaciones de publicación, suscripción, cancelación (unsuscribe) y ping. La operación de publicación envía un bloque binario de datos, el contenido, a un topic  definido por el publisher.

La operación de ping al servidor del broker usando una secuencia de paquetes PINGREQ/PINGRESP, que se usa para saber si está viva la conexión. Esta operación no tiene otra función que la de mantener una conexión en vivo y asegurar que la conexión TCP no ha sido apagada por una pasarela o un router.

Cuando un publicador o suscriptor desea finalizar una sesión MQTT, envía un mensaje DISCONNECT al briker y, a continuación, cierra la conexión. Esto se denomina “graceful shutdown” porque le da al cliente la posibilidad de volver a conectarse fácilmente al proporcionarle su identidad de cliente y reanudar el proceso donde lo dejó.

Si la desconexión ocurre repentinamente sin tiempo para que un publisher envíe un mensaje DISCONNECT, el broker puede enviar a los suscriptores un mensaje del publisher que el broker ha almacenado previamente en caché. El mensaje, que se llama testamento, proporciona a los suscriptores instrucciones sobre qué hacer si el editor muere inesperadamente.

MQTT tiene 14 tipos de mensajes, normalmente un usuario sólo usa los mensajes de CONNECT, PUBLISH, SUBSCRIBE Y UNSUBSCRIBE. Si quereis conocer los tipos de mensajes podéis consultarlos en: https://dzone.com/refcardz/getting-started-with-mqtt

Más información: https://internetofthingsagenda.techtarget.com/definition/MQTT-MQ-Telemetry-Transport

Para saber más sobre el protocolo MQTT y aplicaciones:

Calidad de Servicio MQTT (QoS)

Al enviar mensajes MQTT existe la posibilidad que los mensajes no lleguen al destinatario.

El envío de mensajes sin saber con seguridad que fueron recibidos se llama “QoS 0” (cero).

Es posible que también desee QoS 1, que le permite saber que el mensaje fue recibido. Básicamente, después de cada publicación, el suscriptor dice “OK”. En el lenguaje MQTT se llama “PUBACK” (Reconocimiento de publicación).

También está QoS 2, que no sólo garantiza que su mensaje fue recibido, sino que sólo fue recibido una vez. Esto es un poco más complejo porque necesitas empezar a rastrear los IDs de los paquetes, así que lo dejaremos para más adelante.

Los niveles de calidad de servicio (QoS) determinan cómo se entrega cada mensaje MQTT y deben especificarse para cada mensaje enviado a través de MQTT. Es importante elegir el valor de QoS adecuado para cada mensaje, ya que este valor determina la forma en que el cliente y el servidor se comunican para entregar el mensaje. Con el uso de MQTT se podrían lograr tres niveles de calidad de servicio para la entrega de mensajes:

  • QoS 0 (A lo sumo una vez – at most once) – donde los mensajes se entregan de acuerdo con los mejores esfuerzos del entorno operativo. Puede haber pérdida de mensajes. Confía en la fiabilidad del TCP. No se hacen retransmisiones.
  • QoS 1 (Al menos una vez – at least once) – donde se asegura que los mensajes lleguen, pero se pueden producir duplicados. El Receiver recibe el mensaje por lo menos una vez. Si el receiver no confirma la recepción del mensaje o se pierde en el camino el Sender reenvía el mensaje hasta que recibe por lo menos una confirmación. Pueden duplicarse mensajes.
  • QoS 2 (Exactamente una vez – exactly once) – donde se asegura que el mensaje llegue exactamente una vez. Eso incrementa la sobrecarga en la comunicación pero es la mejor opción cuando la duplicación de un mensaje no es aceptable.

Existe una regla simple cuando se considera el impacto del rendimiento de la QoS. Es “Cuanto mayor sea la QoS, menor será el rendimiento“. MQTT proporciona flexibilidad a los dispositivos de IoT para elegir la calidad de servicio apropiada que necesitarían para sus requisitos funcionales y ambientales.

Último deseo y Testamento (MQTT LWT)

Un cliente puede establecer un mensaje Last Will and Testament (LWT) en el momento en el que conecta conecta con el Broker MQTT. Si el cliente no desconecta correctamente el Broker envía el mensaje LWT.

Cuando un cliente MQTT se conecta al servidor MQTT puede definir un tema y un mensaje que necesita ser publicado automáticamente sobre ese tema cuando se desconecta inesperadamente. Esto también se llama “Ultima voluntad y testamento” (LWT). Cuando el cliente se desconecta inesperadamente, el temporizador keep alive del lado del servidor detecta que el cliente no ha enviado ningún mensaje o el PINGREQ keep alive. Por lo tanto, el servidor publica inmediatamente el mensaje Will en el tema Will especificado por el cliente.

La función LWT puede ser útil en algunos escenarios. Por ejemplo, para un cliente MQTT remoto, esta función se puede utilizar para detectar cuando los dispositivos IoT salen de la red. La función LWT se puede utilizar para crear notificaciones para una aplicación que esté supervisando la actividad del cliente.

Paquete:

Ver explicación completa en: https://learn.adafruit.com/mqtt-adafruit-io-and-you/qos-and-wills

Más información: https://www.ibm.com/developerworks/community/blogs/5things/entry/5_things_to_know_about_mqtt_the_protocol_for_internet_of_things?lang=en

Otros Conceptos MQTT

  • Cada mensaje MQTT puede ser enviado como un mensaje con retención (retained), en este caso cada nuevo cliente que conecta a un topic recibirá el último mensaje retenido de ese tópico.
  • Cuando un cliente conecta con el Broker puede solicitar que la sesión sea persistente, en ese caso el Broker almacena todas las suscripciones del cliente, todos los mensajes QoS 1 y 2 no procesados o perdidos por el cliente
  • Un mensaje MQTT CONNECT contiene un valor keepAlive en segundos donde el cliente establece el máximo tiempo de espera entre intercambio de mensajes

Seguridad MQTT

Ya sabemos lo importante que es la seguridad, y más en escenarios IoT en el que comunican objetos entre sí.  MQTT confía en tecnologías estándares para esto:

  • Autenticación usuario/Password
  • Seguridad SSL/TLS

Los puertos estándar son el 1883 para la comunicación no cifrada y el 8883 para la comunicación cifrada mediante SSL/TLS. Durante el handshake SSL/TLS, el cliente valida el certificado del servidor para autenticar el servidor. El cliente también puede proporcionar un certificado de cliente al broker durante el handshake, que el broker puede utilizar para autenticar al cliente. Aunque no forma parte específica de la especificación MQTT, se ha convertido en habitual que los broker admitan la autenticación de clientes con certificados SSL/TLS del lado del cliente.

Dado que el protocolo MQTTT pretende ser un protocolo para dispositivos con recursos limitados y de IoT, el SSL/TLS puede no ser siempre una opción y, en algunos casos, puede no ser deseable. En estos casos, la autenticación se presenta como un nombre de usuario y contraseña de texto claro que el cliente envía al servidor como parte de la secuencia de paquetes CONNECT/CONNNACK. Algunos brokers, especialmente los brokers abiertos publicados en Internet, aceptan clientes anónimos. En tales casos, el nombre de usuario y la contraseña simplemente se dejan en blanco.

Reto MQTT: Seguridad, Interoperabilidad y Autenticación

Debido a que el protocolo MQTT no fue diseñado con la seguridad en mente, el protocolo ha sido tradicionalmente utilizado en redes back-end seguras para propósitos específicos de la aplicación. La estructura temática de MQTT puede fácilmente formar un árbol enorme, y no hay una manera clara de dividir un árbol en dominios lógicos más pequeños que puedan ser federados. Esto dificulta la creación de una red MQTT globalmente escalable porque, a medida que crece el tamaño del árbol temático, aumenta la complejidad.

Otro aspecto negativo de MQTT es su falta de interoperabilidad. Debido a que las cargas útiles de mensajes son binarias, sin información sobre cómo están codificadas (sin metadatos), pueden surgir problemas, especialmente en arquitecturas abiertas en las que se supone que las diferentes aplicaciones de los diferentes fabricantes funcionan a la perfección entre sí.

MQTT tiene características de autenticación mínimas incorporadas en el protocolo. El nombre de usuario y las contraseñas se envían en texto claro y cualquier forma de uso seguro de MQTT debe emplear SSL/TLS, que, lamentablemente, no es un protocolo ligero.

Autenticar clientes con certificados del lado del cliente no es un proceso simple, y no hay manera en MQTT, excepto el uso de medios propietarios fuera de banda, para controlar quién posee un topic y quién puede publicar información sobre él. Esto hace que sea muy fácil inyectar mensajes dañinos, ya sea intencionadamente o por error, en la red.

Además, no hay forma de que el receptor del mensaje sepa quién envió el mensaje original a menos que esa información esté contenida en el mensaje real. Las características de seguridad que tienen que ser implementadas sobre MQTT de forma propietaria aumentan la huella de código (footprint) y hacen que las implementaciones sean más difíciles.

MQTT vs HTTP (REST API)

La diferencia entre una REST API y MQTT es que MQTT mantiene una conexión hacia el servicio abierta y puede responder mucho más rápido a los cambios en el feed. La REST API solo conecta al servicio cuando se hace una petición (request) y es más apropiada para proyecto donde el dispositivo permanece en modo sleep (para reducir el consumo) y despierta solo para mandar o recibir datos. (Push vs pull)

Push = websocket

Pull = REST API

HTTP no tiene estado (stateless), por lo que debe tener una conexión por cada transferencia de datos: una conexión cada vez que desee escribir datos, una conexión para la lectura. HTTP es ideal para grandes cantidades de datos, como los que se utilizan para sitios web, y se puede utilizar para conexiones IoT. Pero no es ligero y no es muy rápido. Otro problema con HTTP es que es sólo pull.

MQTTT es un gran protocolo. Es extremadamente sencillo y ligero. La conexión a un servidor sólo tarda unos 80 bytes. Usted permanece conectado todo el tiempo, cada dato ‘publicación’ (datos push de un dispositivo a otro) y cada dato ‘suscripción’ (datos push de un servidor a otro) es de unos 20 bytes. Ambos ocurren casi instantáneamente.

MQTT puede funcionar sobre cualquier tipo de red, ya sea una red mesh, TCP/IP, Bluetooth, etc.

Si se usa MQTT usando Bluetooth, XBee, Bluetooth LE, LoRA u otro protocolo y dispositivo no conectado a Internet, ¡necesitarás una pasarela!

Ejemplo de gatewaty: https://learn.adafruit.com/datalogging-hat-with-flora-ble/

Clientes MQTT

Existen muchos clientes y librerías para MQTT, puesto que se trata de un protocolo libre sencillo de implementar.

Una aplicación de cliente MQTT se encarga de recopilar información del dispositivo de telemetría, conectar con el servidor y publicar la información en el servidor. También puede suscribirse a temas, recibir publicaciones y controlar el dispositivo de telemetría.

Cliente online: http://www.hivemq.com/demos/websocket-client/

Los mejores clientes MQTT: https://www.hivemq.com/blog/seven-best-mqtt-client-tools

Tres herramientas MQTT y como simular MQTT: https://dzone.com/articles/top-3-online-tools-to-simulate-an-mqtt-client

Herramientas MQTT: https://www.hivemq.com/blog/overview-of-mqtt-client-tools

MQTT.fx

Uno de los clientes MQTT más populares para instalar en ordenador es MQTT.fx hecho en java y basado en Eclipse Paho http://www.eclipse.org/paho/

Está disponible para Windows, Linux y MAC

Web: https://mqttfx.jensd.de/

Descarga: http://www.jensd.de/apps/mqttfx/1.7.1/

Referencias: http://mqttfx.jensd.de/index.php/references

Más información:

MQTT-Spy

MQTT-spy es una utilidad de código abierto destinada a ayudarle a monitorear la actividad sobre temas de MQTTT. Ha sido diseñado para tratar con grandes volúmenes de mensajes, así como con publicaciones ocasionales.

mqtt-spy es probablemente una de las utilidades de código abierto más avanzadas para publicar y monitorear actividades sobre temas de MQTT. Está dirigido a dos grupos de usuarios:

  • Innovadores que necesitan una herramienta para crear prototipos de IO o proyectos de integración
  • Usuarios avanzados que necesitan una utilidad avanzada para sus entornos de trabajo

Web: https://kamilfb.github.io/mqtt-spy/

Wiki: https://github.com/eclipse/paho.mqtt-spy/wiki

Descarga: https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads

Getting Started: https://github.com/eclipse/paho.mqtt-spy/wiki/GettingStarted

Ver mqtt-spy como aplicación para probar un mosquitto: https://github.com/kamilfb/mqtt-spy/wiki/Overview

Resumen: https://github.com/kamilfb/mqtt-spy/wiki/Overview

Más información:

MQTT Lens

MQTT se puede instalar fácilmente a través de Google Chrome App Store. La herramienta tiene una interfaz bastante limpia y soporta todas las opciones de conexión disponibles desde la especificación MQTT, excepto las sesiones persistentes. Acepta conexiones a más de un broker al mismo tiempo y los colorea de manera diferente para facilitar su asociación.

La interfaz para suscribirse, publicar y ver todos los mensajes recibidos es simple y fácil de entender. Lamentablemente no hay posibilidad de publicar mensajes retenidos. Pero aunque esta aplicación se instala a través de Chrome, se ejecuta como una aplicación independiente.

Usando MQTT Lens:

Uso de MQTT lens: http://www.hivemq.com/blog/mqtt-toolbox-mqtt-lens

Descarga: https://chrome.google.com/webstore/detail/mqttlens/hemojaaeigabkbcookmlgmdigohjobjm

Clientes MQTT para móvil

Eclipse Paho Android Service: https://www.eclipse.org/paho/clients/android/

Algunos clientes Android (por orden de descargas):

IOS:

Clientes MQTT en Dispositivos embebidos

MQTT se puede usar desde diversos dispositivos como cliente mediante el uso de librerías:

  • Arduino
  • Python
  • Clientes MQTT
  • Raspberry Pi
  • Autómatas (ver PLC de Unitronics y otros)
  • Otros sistemas embebidos

MQTT y Arduino

MQTT ha surgido como un protocolo de mensajería estándar para la IoT. Se puede utilizar en redes TCP/IP y es muy ligero. La norma sigue un modelo de publicación-suscripción (“pub/sub”).

Como habrás imaginado, para conseguir una comunicación MQTT, emplearemos una librería. Existen muchas disponibles gracias a la gran (tanto en tamaño como en calidad) comunidad que existe alrededor de Arduino.

Una de las librerías más conocidas y la más estable y flexible es Arduino Client for MQTT http://pubsubclient.knolleary.net/ que nos provee de un sencillo cliente que nos permite tanto subscribirnos como publicar contenido usando MQTT. Internamente, usa la API de Arduino Ethernet Client lo que lo hace compatible con un gran número de shields y placas.

Web: https://pubsubclient.knolleary.net/

Repositorio: https://github.com/knolleary/pubsubclient

Esta librería está disponible en el gestor de librerías.

Documentación: https://pubsubclient.knolleary.net/api.html

Hardware compatible:

  • Arduino Ethernet
  • Arduino Ethernet Shield
  • Arduino YUN – use the included YunClient in place of EthernetClient, and be sure to do a Bridge.begin() first
  • Arduino WiFi Shield – if you want to send packets greater than 90 bytes with this shield, enable the MQTT_MAX_TRANSFER_SIZE option in PubSubClient.h.
  • Sparkfun WiFly Shield – when used with this library
  • Intel Galileo/Edison
  • ESP8266
  • ESP32

Getting started con esa librería: https://ricveal.com/blog/arduino-mqtt/

Más info de esta librería: https://www.hivemq.com/blog/mqtt-client-library-encyclopedia-arduino-pubsubclient/

Tutorial con esta librería MQTT, Arduino y bluemix:: https://www.ibm.com/developerworks/ssa/cloud/library/cl-bluemix-arduino-iot2/index.html

Otras Librerías MQTT para Arduino

A la hora de elegir una librería MQTT, debemos comprobar que funciona con el dispositivo HW Arduino y el HW de comunicación.

Otras librerías MQTT para Arduino:

Más información de uso librería Adafruit:

Seguridad MQTT con ESP 8266: https://io.adafruit.com/blog/security/2016/07/05/adafruit-io-security-esp8266/