Archivo de la categoría: Ethernet

Comunicaciones Arduino

Una de las principales ventajas de Arduino es que podemos dotarlo de comunicación de una forma sencilla añadiendo un shield o una breakout board y dispondremos de casi cualquier tipo de comunicación tanto de acceso a Internet como de para comunicar arduinos entre sí o con otros dispositivos de una red privada.

Ethernet: la forma más clásica de comunicar arduino mediante el shield de ethernet. https://www.arduino.cc/en/Main/ArduinoEthernetShield

Wifi: Hay múltiples formas de conectar Arduino a internet mediante wifi:

Bluetooth: https://aprendiendoarduino.wordpress.com/2016/11/13/bluetooth-en-arduino/

Conectividad Arduino

Arduino puede comunicarse con cualquier medio usando el HW adecuado. Comunicaciones para Arduino:

Anuncio publicitario

Instalación Raspbian

Software quickstart: https://www.raspberrypi.org/learning/software-guide/quickstart/

Guías de iniciación:

Formatear la tarjeta SD de la forma correcta.

Uno de los errores más frecuentes de los usuarios de tarjetas de memoria SD está en creer que este tipo de memorias funcionan igual que una memoria USB o un disco duro y se pueden formatear con las utilidades del sistema operativo. A diferencia de otros dispositivos de almacenamiento, las tarjetas SD incluyen una zona especial denominada “Protected Area”, empleada para temas de seguridad, que requiere un tratamiento especial. Adicionalmente – y dependiendo de la configuración y el tipo de tarjeta – es necesario un formateo ajustado al tipo de tarjeta.

Descargar e instalar la utilidad “SD Card Formatter” provista por la SD Association, los mismos que definen los estándares de este medio de almacenamiento. Después de instalada, se debe proceder a formatear la tarjeta SD antes de utilizarla. De esta forma se garantiza que se usará todo el espacio disponible de la tarjeta y se optimizará su desempeño y almacenamiento de acuerdo con las especificaciones del fabricante.

Descarga https://www.sdcard.org/downloads/formatter_4/eula_windows/index.html

Instalar Imagen Raspbian

Descargar imagen Raspbian zip: https://www.raspberrypi.org/downloads/

Guía de instalación https://www.raspberrypi.org/documentation/installation/installing-images/README.md

Para copiar la imagen a una SD usar:

Tutoriales de instalación de Raspbian:

Pasos:

  • Descargar SO: Raspbian
  • Formatear microSD: SD Card Formatter 4.0
  • Flashear: Etcher
  • Acceder a la SD desde un PC: Partición “/boot” es accesible desde Windows, partición extendida.
  • Preconfiguración (recomendado para modo headless): SSH

Etcher

Etcher es una herramienta gráfica de escritura de tarjetas SD que funciona en Mac OS, Linux y Windows, y es la opción más fácil para la mayoría de los usuarios. Etcher también soporta la escritura de imágenes directamente desde el archivo zip, sin necesidad de descomprimirlas.

Descargar Etcher: https://www.balena.io/etcher/ y yscribir tu imagen con Etcher.

Win32DiskImager

Descarga https://sourceforge.net/projects/win32diskimager/

Con Win32DiskImager no solo se puede copiar una imagen sino guardar una imagen de una tarjeta SD.

Post Instalación

Luego ejecutar:

Conexión a la Red

La forma general de conectar a Internet la Raspberry Pi es mediante

  • Conexión a Ethernet por DHCP
  • Conectar a Wifi por DHCP

Por este motivo no es necesario configurar nada si conectamos a un router con DHCP configurado para ethernet y en WiFi solo deberemos configurar la red wifi.

DHCP:

La propia Raspberry Pi podría hacer de servidor DHCP: https://www.raspberrypi.org/learning/networking-lessons/lesson-3/plan/

La Raspberry Pi 3 es la primera de la familia en incluir WIFI estándar de serie, lo que es un gran avance de salida y garantiza que se normalice las conexiones, a diferencia de las versiones previas en las que había que comprar un módulo WiFi y configurar la WIFI en función del modelo de adaptador que usasemos.

En el caso actual, la configuración de la WIFI se reduce a listar las redes disponibles y elegir la nuestra, para después proporcionar la contraseña de acceso.

Aquí tienes iconos para la configuración de varios elementos, como el volumen de audio la WIFI y hasta el Bluetooth, que recuerda viene de serie en la nueva Raspi3. Para configurar la WIFI pincha y selecciona el icono y selecciona la WiFi a conectarse.

Una vez configurado comprobar que se puede navegar.

Aunque hayas conectado correctamente a Internet hay mil razones por las que necesitas conocer más información de tus conexiones IP, especialmente saber la IP para que al actuar como servidor saber a qué IP conectarnos.

Con el comando “ipconfig” podemos saber qué interfaces están conectados y que DNS usan o que Gateway o router estas usando como salida.

Para obtener los datos de ethernet teclea ifconfig eth0 y para wifi teclea ifconfig wlan0

Con el comando route -ne se pueden ver las rutas configuradas

Más información: https://www.prometec.net/conectar-a-internet/

Para obtener más información de las redes ver los directorios:

  • /sys/class/net/eth0
  • /sys/class/net/wlan0

Por ejemplo en el fichero address está la dirección MAC del controlador de red

En algunas ocasiones nos puede interesar asignar una IP fija, para ello seguir el tutorial: https://www.luisllamas.es/raspberry-pi-ip-estatica/

Los fichero de configuración de IP son:

  • /etc/dhcpcd.conf
  • /etc/network/interfaces

Más información: https://raspberrypi.stackexchange.com/questions/39785/dhcpcd-vs-etc-network-interfaces

También es conveniente cambiar el hostname, seguir este tutorial: https://www.howtogeek.com/167195/how-to-change-your-raspberry-pi-or-other-linux-devices-hostname/

Acceso Remoto

Una vez instalado vamos a asegurarnos el acceso remoto para no tener que tener conectado a un monitor y un teclado y ratón y podamos manejarlo.

Acceso Remoto: https://www.raspberrypi.org/documentation/remote-access/

SSH

La mejor forma de acceder a Raspberry Pi remotamente en modo comando en línea estando en la misma red es usando SSH.

SSH sigue un modelo cliente-servidor. El cliente inicia una petición al servidor, que autentifica la comunicación e inicia el entorno Shell. Múltiples clientes pueden conectarse a un mismo servidor. Por defecto SSH emplea el puerto TCP 22 aunque puede cambiarse fácilmente.

SSH dispone de más usos muy interesantes. por ejemplo, podemos copiar archivos de forma segura entre dos dispositivos, o tunelizar cualquier conexión de otra aplicación a través de un canal seguro SSH.

Para activar el servidor SSH en Raspberry Pi comprobar que estás activado en menu – Preferencias- Configuración de Raspberry Pi – Interfaces

Esta conexión sólo funciona en red local. Para poder acceder desde fuera, a través de Internet, hay que configurar un mapeo de puertos en el router. El proceso completo depende del router.

Para conectarnos desde Windows a SSH, deberemos emplear un cliente SSH para conectarnos con Raspberry Pi. El cliente más utilizado en Windows es Putty, que es Open Source y está disponible en https://www.putty.org/

Descargamos y ejecutamos Putty y nos aparece una ventana donde podemos introducir la dirección IP (o el nombre) de la Raspberry Pi. Al conectarnos se nos preguntará el nombre del usuario y la contraseña.

Más información:

VNC

La mejor forma de acceder a Raspberry Pi remotamente en modo escritorio estando en la misma red es usando VNC.

VNC es un programa de software libre basado en una estructura cliente-servidor que permite observar las acciones del ordenador servidor remotamente a través de un ordenador cliente. VNC no impone restricciones en el sistema operativo del ordenador servidor con respecto al del cliente: es posible compartir la pantalla de una máquina con cualquier sistema operativo que admita VNC conectándose desde otro ordenador o dispositivo que disponga de un cliente VNC portado.

Seguir este tutorial: https://www.raspberrypi.org/documentation/remote-access/vnc/README.md

La conexión de VNC de RealVNC se incluye con Raspbian. Consiste en el servidor de VNC, que permite controlar Raspberry Pi remotamente, y el VNC viewer, que permite que controlar ordenadores remotamente de su Raspberry Pi.

El servidor VNC debe habilitarse para poder conectarse remotamente, para ello ir a menu – Preferencias- Configuración de Raspberry Pi – Interfaces y asegurarse que VNC está activado.

Una vez activado establecer la conexión desde el ordenador instalando el VNC viewer: https://www.realvnc.com/en/connect/download/viewer/ y conectarse a la IP de nuestra Raspberry:

Con VNC también se puede establecer una conexión en la nube.

Más información:

Team Viewer

En el caso que queramos conectarnos a nuestra Raspberry Pi estando en cualquier parte del mundo, una buena opción es TeamViewer.

TeamViewer es un software informático privado de fácil acceso, que permite conectarse remotamente a otro equipo. Entre sus funciones están: compartir y controlar escritorios, reuniones en línea, videoconferencias y transferencia de archivos entre ordenadores.Team Viewer es gratuito para uso personal.

Web: https://www.teamviewer.com/es/

La instalación es muy simple solo hay que descargarse TeamViewer Host para raspberry Pi desde https://www.teamviewer.com/es/descarga/linux/ y acerse una cuenta en la web de TeamViewer https://www.teamviewer.com/es/

Instalar el fichero teamviewer-host_xxx_armhf.deb, simplemente haciendo doble click o con el comando “sudo dpkg -i filename.deb”

Si hay dependencias solucionarlo con  “sudo apt-get update” y “sudo apt-get -f upgrade”

Una vez instalado ejecutar TeamViewer en Raspberry Pi y poner las credenciales de la cuenta de TeamViewer

Una vez instalado, acceder a https://login.teamviewer.com/LogOn con la cuenta de TeamViewer y ya podemos acceder a nuestra Raspberry Pi. Necesitaremos instalar el cliente de TeamViewer o la app de Chrome:

Solo para controlar la Raspberry Pi remotamente ejecutar el cliente “TeamViewer_Setup.exe” de esta forma:

Más información:

Hardware Ethernet en Arduino

El Arduino ethernet shield nos da la capacidad de conectar un Arduino a una red ethernet. Es la parte física que implementa la pila de protocolos TCP/IP.

Está basada en el chip ethernet Wiznet W5100. El Wiznet W5100 provee de una pila de red IP capaz de soportar TCP y UDP. Soporta hasta cuatro conexiones de sockets simultáneas. Usa la librería Ethernet para leer y escribir los flujos de datos que pasan por el puerto ethernet. Me permitirá escribir sketches que se conecten a internet usando esta shield.

Datasheet de W5100: https://www.sparkfun.com/datasheets/DevTools/Arduino/W5100_Datasheet_v1_1_6.pdf

Librería ethernet: http://arduino.cc/en/Reference/Ethernet

El shield provee un conector ethernet estándar RJ45. La ethernet shield dispone de unos conectores que permiten conectar a su vez otras placas encima y apilarlas sobre la placa Arduino.

Arduino usa los pines digitales 10, 11, 12, y 13 (SPI) para comunicarse con el W5100 en la ethernet shield. Estos pines no pueden ser usados para e/s genéricas.

El botón de reset en la shield resetea ambos, el W5100 y la placa Arduino.

La shield contiene varios LEDs para información:

  • ON: indica que la placa y la shield están alimentadas
  • LINK: indica la presencia de un enlace de red y parpadea cuando la shield envía o recibe datos
  • 100M: indica la presencia de una conexión de red de 100 Mb/s (de forma opuesta a una de 10Mb/s)
  • RX: parpadea cuando el shield recibe datos
  • TX: parpadea cuando el shield envía datos

El jumper soldado marcado como “INT” puede ser conectado para permitir a la placa Arduino recibir notificaciones de eventos por interrupción desde el W5100, pero esto no está soportado por la librería Ethernet. El jumper conecta el pin INT del W5100 al pin digital 2 de Arduino.

El slot SD en la shield usa la librería http://arduino.cc/en/Reference/SD para manejarlo. El propio chip W5100 incluye el manejo de tarjetas SD.

Para usar la Ethernet Shield solo hay que montarla sobre la placa Arduino. Para cargar los sketches a la placa con el shield, conectarla al ordenador mediante el cable USB como se hace normalmente. Luego conectar el puerto Ethernet a un ordenador, a un switch o a un router utilizando un cable ethernet standard (CAT5 o CAT6 con conectores RJ45). La conexión al ordenador puede requerir el uso de un cable cruzado (aunque muchos ordenadores actuales, pueden hacer el cruce de forma interna).

Un tutorial sencillo para comenzar con el shield ethernet en: http://www.artinteractivo.com/arduino-ethernet

Para cualquier duda sobre el ethernet Shield consultar: http://arduino.cc/en/Main/ArduinoEthernetShield

Puntos a recordar del Ethernet Shield:

  • Opera a 5V suministrados desde la placa de Arduino
  • El controlador ethernet es el W5100 con 16K de buffer interno. No consume memoria.
  • El shield se comunica con el microcontrolador por el bus SPI, por lo tanto para usarlo siempre debemos incluir la libreria SPI.h: http://arduino.cc/en/Reference/SPI
  • Soporta hasta 4 conexiones simultáneas
  • Usar la librería Ethernet para manejar el shield: http://arduino.cc/en/Reference/Ethernet
  • El shield dispone de un lector de tarjetas micro-SD que puede ser usado para guardar ficheros y servirlos sobre la red. Para ello es necesaria la librería SD: http://arduino.cc/en/Reference/SD
  • Al trabajar con la SD, el pin 4 es usado como SS.

Arduino UNO se comunica con W5100 y la tarjeta SD usando el bus SPI a través del conector ICSP. Por este motivo los pines 10, 11, 12 y 13 en el UNO y los 50, 51, 52 y 53 en el Mega no podrán usarse. En ambas placas los pines 10 y 4 se usan para seleccionar el W5100 y la tarjeta SD. El Ethernet y el SD no pueden trabajar simultáneamente y debemos tener cuidado al usar ambos de forma conjunta.

Para conectar el shield, se deben seguir estas instrucciones: http://arduino.cc/en/Guide/ArduinoEthernetShield

El esquemático lo podéis encontrar en: http://arduino.cc/en/uploads/Main/arduino-ethernet-shield-06-schematic.pdf

Arduino Ethernet Shield 2

Arduino Ethernet Shield es una placa que aparece en la web de arduino.cc como retirado, pero sigue estando disponible como clones o versiones derivadas.

Existe una nueva versión del Ethernet Shield llamadal Arduino Etherner Shield 2 con el nuevo Wiznet 5500: https://www.arduino.cc/en/Main/ArduinoEthernetShield

Este Shield usa la librería Ethernet 2 cuya sintaxis es igual que la librería Ethernet: https://www.arduino.cc/en/Reference/Ethernet

Data sheet de W5500: https://www.sos.sk/productdata/15/26/12/152612/W5500_datasheet_v1.0.2_1.pdf

Mejoras de W5500: https://feilipu.me/2014/11/16/wiznet-w5500-ioshield-a/

Otros Arduinos con Ethernet

Existe un Arduino Ethernet que es casi igual a un arduino UNO + Ethernet Shield: https://www.arduino.cc/en/Main/arduinoBoardEthernet

También existe el Arduino Leonardo ETH que es casi lo mismo que un Arduino Leonardo + un Ethernet Shield 2: https://www.arduino.cc/en/Main/ArduinoBoardLeonardoEth

Práctica: Uso Ethernet Shield

IP Dinámica con Arduino. DHCP

Configurar Arduino con el ethernet shield de forma que coja la IP dinámicamente por DHCP y lo muestre por pantalla.

Solución: https://github.com/jecrespo/aprendiendoarduino-Curso_Arduino_2017/tree/master/Ejercicio32-DHCP

IP Fija con Arduino

Configurar Arduino con el ethernet shield de forma que le asignamos una IP fija con la siguiente configuración:

  • IP: 192.168.6.1YY. Siendo YY el número = 30 + número del kit. Por ejemplo para el kit 4 la IP es la 192.168.6.134 y para el kit 16 la IP es es 192.168.6.146.
  • Subnent: 255.255.255.0
  • Gateway: 192.168.6.1
  • DNS: 8.8.8.8

Solución: https://github.com/jecrespo/aprendiendoarduino-Curso_Arduino_2017/tree/master/Ejercicio33-Configurar_IP

Hardware Ethernet en Arduino

Para poder añadir conectividad de Ethernet a Arduino disponemos de varios tipos de Ethernet Shield y breakout boards, pero principalmente el chip que tiene el interfaz ethernet y la pila de protocolos TCP/IP es el chip Wiznet W5100 y más recientemente el W5500, pero podemos encontrarnos shields intermedios basados en el W5200. La librería a usar dependerá del chip ethernet usado al estilo de un driver en un ordenador.

Existen otras shields o breakout boards basadas en otros chips y con otras librerías como el ENC28J60:

Cómo elegir la correcta librería para añadir Ethernet cn enc28j60 a Arduino: http://www.homautomation.org/2014/10/27/how-to-choose-the-right-library-to-add-ethernet-enc28j60-to-your-arduino/

Ethernet Shield V1

El Arduino Ethernet Shield V1 nos da la capacidad de conectar un Arduino a una red ethernet. Es la parte física que implementa la pila de protocolos TCP/IP.

Ethernet Shield permite a una placa Arduino conectarse a internet. Está basada en el chip ethernet Wiznet W5100. El Wiznet W5100 provee de una pila de red IP capaz de soportar TCP y UDP. Soporta hasta cuatro conexiones de sockets simultáneas. Usa la librería Ethernet para escribir programas que se conecten a internet usando la shield.

Datasheet de W5100: https://www.sparkfun.com/datasheets/DevTools/Arduino/W5100_Datasheet_v1_1_6.pdf

Para manejar este shield disponemos de la librería Ethernet: http://arduino.cc/en/Reference/Ethernet

El shield provee un conector ethernet estándar RJ45. La ethernet shield dispone de unos conectores que permiten conectar a su vez otras placas encima y apilarlas sobre la placa Arduino.

Arduino usa los pines digitales 10, 11, 12, y 13 (SPI) para comunicarse con el W5100 en la ethernet shield. Estos pines no pueden ser usados para e/s genéricas. El botón de reset en la shield resetea ambos, el W5100 y la placa Arduino.

El jumper soldado marcado como “INT” puede ser conectado para permitir a la placa Arduino recibir notificaciones de eventos por interrupción desde el W5100, pero esto no está soportado por la librería Ethernet. El jumper conecta el pin INT del W5100 al pin digital 2 de Arduino.

La shield contiene varios LEDs para información:

  • ON: indica que la placa y la shield están alimentadas
  • LINK: indica la presencia de un enlace de red y parpadea cuando la shield envía o recibe datos
  • 100M: indica la presencia de una conexión de red de 100 Mb/s (de forma opuesta a una de 10Mb/s)
  • RX: parpadea cuando el shield recibe datos
  • TX: parpadea cuando el shield envía datos

Un tutorial sencillo para comenzar con el shield ethernet en: http://www.artinteractivo.com/arduino-ethernet

Para cualquier duda sobre el ethernet Shield consultar: http://arduino.cc/en/Main/ArduinoEthernetShield

Puntos a recordar del Ethernet Shield:

  • Opera a 5V suministrados desde la placa de Arduino
  • El controlador ethernet es el W5100 con 16K de buffer interno. No consume memoria.
  • El shield se comunica con el microcontrolador por el bus SPI, por lo tanto para usarlo siempre debemos incluir la libreria SPI.h: http://arduino.cc/en/Reference/SPI
  • Soporta hasta 4 conexiones simultáneas
  • Usar la librería Ethernet para manejar el shield: http://arduino.cc/en/Reference/Ethernet
  • El shield dispone de un lector de tarjetas micro-SD que puede ser usado para guardar ficheros y servirlos sobre la red. Para ello es necesaria la librería SD: http://arduino.cc/en/Reference/SD
  • Al trabajar con la SD, el pin 4 es usado como SS.

Nuestro Arduino UNO se comunica con W5100 y la tarjeta SD usando el bus SPI a través del conector ICSP. Por este motivo los pines 10, 11, 12 y 13 en el UNO y los 50, 51, 52 y 53 en el Mega no podrán usarse. En ambas placas los pines 10 y 4 se usan para seleccionar el W5100 y la tarjeta SD.

El W5100 y el SD no pueden trabajar simultáneamente y debemos tener cuidado al usar ambos de forma conjunta.

El esquemático lo podéis encontrar en: http://arduino.cc/en/uploads/Main/arduino-ethernet-shield-06-schematic.pdf

El Ethernet shield es compatible con PoE gracias a un módulo adicional que extrae la energía eléctrica del cable ethernet, anteriormente inyectada desde el switch.

Las características del módulo PoE:

  • IEEE802.3af compliant
  • Low output ripple and noise (100mVpp)
  • Input voltage range 36V to 57V
  • Overload and short-circuit protection
  • 9V Output
  • High efficiency DC/DC converter: typ 75% @ 50% load
  • 1500V isolation (input to output)

Data sheet: http://arduino.cc/en/uploads/Main/PoE-datasheet.pdf

Ethernet Shield V2

Arduino Ethernet Shield V1 es una placa que aparece en la web de arduino.cc como retirado, pero sigue estando disponible como clones o versiones derivadas.

Existe una nueva versión del Ethernet Shield llamada Arduino Ethernet Shield 2 con el nuevo Wiznet 5500: https://www.arduino.cc/en/Main/ArduinoEthernetShield

Este Shield usa la librería Ethernet 2 cuya sintaxis es igual que la librería Ethernet: https://www.arduino.cc/en/Reference/Ethernet

Data sheet de W5500: https://www.sos.sk/productdata/15/26/12/152612/W5500_datasheet_v1.0.2_1.pdf

Mejoras de W5500: https://feilipu.me/2014/11/16/wiznet-w5500-ioshield-a

Arduino Ethernet Shield 2:

Otros Arduinos con Ethernet

Existe un Arduino Ethernet que es casi igual a un arduino UNO + Ethernet Shield: https://www.arduino.cc/en/Main/arduinoBoardEthernet

También existe el Arduino Leonardo ETH que es casi lo mismo que un Arduino Leonardo + un Ethernet Shield 2: https://www.arduino.cc/en/Main/ArduinoBoardLeonardoEth

Para las tarjetas basadas en el chip wiznet 5200:

Power over Ethernet

El Ethernet shield es compatible con PoE gracias a un módulo adicional que extrae la energía eléctrica del cable ethernet, anteriormente inyectada desde el switch.

Las características del módulo PoE:

  • IEEE802.3af compliant
  • Low output ripple and noise (100mVpp)
  • Input voltage range 36V to 57V
  • Overload and short-circuit protection
  • 9V Output
  • High efficiency DC/DC converter: typ 75% @ 50% load
  • 1500V isolation (input to output)

Data sheet: http://arduino.cc/en/uploads/Main/PoE-datasheet.pdf

Más información sobre el Power Over Ethernet:

Como funciona PoE: http://www.bb-elec.com/Learning-Center/All-White-Papers/Ethernet/Power-over-Ethernet-PoE.aspx

Phantom Feeding:

Alimentación sobre cables libres:

Práctica: Uso Ethernet Shield

IP Dinámica con Arduino. DHCP

Configurar Arduino con el ethernet shield de forma que coja la IP dinámicamente por DHCP y lo muestre por pantalla.

Solución: https://github.com/jecrespo/aprendiendoarduino-Curso_Arduino_2017/tree/master/Ejercicio32-DHCP

IP Fija con Arduino

Configurar Arduino con el ethernet shield de forma que le asignamos una IP fija con la siguiente configuración:

  • IP: 192.168.6.1YY. Siendo YY el número = 30 + número del kit. Por ejemplo para el kit 4 la IP es la 192.168.6.134 y para el kit 16 la IP es es 192.168.6.146.
  • Subnent: 255.255.255.0
  • Gateway: 192.168.6.1
  • DNS: 8.8.8.8

Solución: https://github.com/jecrespo/aprendiendoarduino-Curso_Arduino_2017/tree/master/Ejercicio33-Configurar_IP

Grabar Datos en Tarjeta SD

El Ethernet shield tiene disponible una ranura para tarjetas microSD. Arduino es capaz de leer y escribir en la tarjeta microSD mediante la librería SD: https://www.arduino.cc/en/Reference/SD

Leer la documentación de la librería SD y entender qué hace cada una de las clases y sus métodos.

Insertar una tarjeta microSD y hacer un programa que grabe los datos de temperatura en un archivo llamado temp_log.csv cada 5 segundos. Los datos a guardar son: segundos desde inicio con la función millis() y la temperatura del sensor TMP36.

Opcionalmente crear un menú con 3 opciones:

  • 1 – Muestra el último dato guardado en la SD
  • 2 – Vuelca el contenido del fichero temp_log.csv por consola
  • 3 – Borra el contenido del fichero

Esquema de conexión:

Solución: https://github.com/jecrespo/aprendiendoarduino-Curso_Arduino_2017/tree/master/Ejercicio34-SD_Datalogger

Protocolo TCP/IP

El modelo TCP/IP describe un conjunto de guías generales de diseño e implementación de protocolos de red específicos para permitir que un equipo pueda comunicarse en una red. TCP/IP provee conectividad de extremo a extremo especificando como los datos deberían ser formateados, direccionados, transmitidos, enrutados y recibidos por el destinatario.

Más información: https://es.wikipedia.org/wiki/Modelo_TCP/IP

La importancia del modelo TCP/IP es que es el modelo usado para acceder a Internet o a redes internas (Intranet) de ordenadores. Arduino va a permitir conectarse a Internet o a una red interna mediante TCP/IP y poder realizar múltiples operaciones o usarse como pasarela para conectar a Internet dispositivos que no tienen esa capacidad. La implementación de la pila de protocolos de TCP/IP en Arduino se hace mediante un shield o HW adicional que nos da la capa de acceso a red (ethernet o WiFi), internet (IP) y transporte. La capa de aplicación deberemos implementarla dentro de Arduino ya sea directamente o mediante una librería.

En el caso del protocolo TCP/IP la pila OSI se simplifica:

Capa de Aplicación.Invoca programas que acceden servicios en la red. Interactúan con uno o más protocolos de transporte para enviar o recibir datos, en forma de mensajes o bien en forma de flujos de bytes.
Capa de Transporte.Provee comunicación extremo a extremo desde un programa de aplicación a otro. Regula el flujo de información. Puede proveer un transporte confiable asegurándose que los datos lleguen sin errores y en la secuencia correcta. Coordina a múltiples aplicaciones que se encuentren interactuando con la red simultáneamente de tal manera que los datos que envíe una aplicación sean recibidos correctamente por la aplicación remota, esto lo hace añadiendo identificadores de cada una de las aplicaciones. Realiza además una verificación por suma, para asegurar que la información no sufrió alteraciones durante su transmisión.
Capa Internet.Controla la comunicación entre un equipo y otro, decide qué rutas deben seguir los paquetes de información para alcanzar su destino. Conforma los paquetes IP que será enviados por la capa inferior. Desencapsula los paquetes recibidos pasando a la capa superior la información dirigida a una aplicación.
Capa de Interfaz de Red.Emite al medio físico los flujos de bit y recibe los que de él provienen. Consiste en los manejadores de los dispositivos que se conectan al medio de transmisión.

Más información en: http://www.uca.edu.sv/investigacion/tutoriales/tcp-ip.html

Pila de protocolos:

Los elementos de red (switches, routers, etc…) no llegan hasta la última capa y se podría representar así la comunicación entre dos dispositivos.

Algunos elementos de la red de comunicación pueden llegar a capas superiores a la de red e incluso hasta la capa de aplicación como los firewalls para detectar ataques en capas superiores. Es el caso de firewalls de estado y de aplicación. Un cortafuegos de aplicación puede filtrar protocolos de capas superiores tales como FTP, TELNET, DNS, DHCP, HTTP, TCP, UDP y TFTP (GSS). Por ejemplo, si una organización quiere bloquear toda la información relacionada con una palabra en concreto, puede habilitarse el filtrado de contenido para bloquear esa palabra en particular. No obstante, los cortafuegos de aplicación resultan más lentos que los de estado.

Direccionamiento IP

TCP/IP utiliza un identificador denominado dirección internet o dirección IP, cuya longitud es de 32 bytes. La dirección IP identifica tanto a la red a la que pertenece una computadora como a ella misma dentro de dicha red.

  • Longitud de 32 bits.
  • Identifica a las redes y a los nodos conectados a ellas.
  • Especifica la conexión entre redes.
  • Se representan mediante cuatro octetos, escritos en formato decimal, separados por puntos.

Existen ciertas direcciones en cada clase de dirección IP que no están asignadas y que se denominan direcciones privadas. Las direcciones privadas pueden ser utilizadas por los hosts que usan traducción de dirección de red (NAT) para conectarse a una red pública o por los hosts que no se conectan a Internet. En una misma red no pueden existir dos direcciones iguales, pero sí se pueden repetir en dos redes privadas que no tengan conexión entre sí o que se conecten mediante el protocolo NAT. Las direcciones privadas son:

  • Clase A: 10.0.0.0 a 10.255.255.255 (8 bits red, 24 bits hosts).
  • Clase B: 172.16.0.0 a 172.31.255.255 (16 bits red, 16 bits hosts). 16 redes clase B contiguas, uso en universidades y grandes compañías.
  • Clase C: 192.168.0.0 a 192.168.255.255 (24 bits red, 8 bits hosts). 256 redes clase contiguas, uso de compañías medianas y pequeñas además de pequeños proveedores de internet (ISP).

Clases de direcciones IP:

ClasesNúmero de RedesNúmero de NodosRango de Direcciones IP
A12716,777,2151.0.0.0 a la 127.0.0.0
B409565,535128.0.0.0 a la 191.255.0.0
C2,097,151255192.0.0.0 a la 223.255.255.0

Subredes en IP:

  • Las subredes deben identificarse usando una máscara de subred.
  • La máscara de subred es de cuatro bytes y para obtener el número de subred se realiza un operación AND lógica entre ella y la dirección IP de algún equipo.
  • La máscara de subred deberá ser la misma para todos los equipos de la red IP.

El enrutamiento sirve para alcanzar redes distantes. Las direcciones IP se agrupan en clases. Ahora bien para cada clase se pueden contar con un número determinados de subredes. Las subredes son redes físicas independientes que comparten la misma dirección IP (es decir aquella que identifica a la red principal). La pregunta entonces es ¿cómo se logra que equipos que comparten el mismo identificador de red pero se sitúan en redes físicas diferentes podrán comunicarse usando compuertas? La solución a este problema es determinando una máscara de dirección.

Supóngase que la dirección IP de  una equipo es 148.206.257.2. La máscara de subred es 255.255.255.0. El equipo por tanto está en la subred 148.206.257.0

Una dirección IP dinámica es una IP asignada mediante un servidor DHCP (Dynamic Host Configuration Protocol) al usuario. La IP que se obtiene tiene una duración máxima determinada. El servidor DHCP provee parámetros de configuración específicos para cada cliente que desee participar en la red IP. Entre estos parámetros se encuentra la dirección IP del cliente.

Las IP dinámicas son las que actualmente ofrecen la mayoría de operadores. El servidor del servicio DHCP puede ser configurado para que renueve las direcciones asignadas cada tiempo determinado.

Más información de DHCP: http://es.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

Protocolo de Mensajes de Control de Internet ICMP (Internet Control Message Protocol)

  • Reporta sobre destinos inalcanzables.
  • Control de flujo de datagramas y congestión.
  • Controla los requerimiento de cambio de rutas entre compuertas.
  • Detecta rutas circulares o excesivamente largas.
  • Verifica la existencia de trayectorias hacia alguna red y el estatus de la misma.

La función de la dirección IPv6 es exactamente la misma que la de su predecesor IPv4, pero dentro del protocolo IPv6. Está compuesta por 128 bits y se expresa en una notación hexadecimal de 32 dígitos. IPv6 permite actualmente que cada persona en la Tierra tenga asignados varios millones de IPs, ya que puede implementarse con 3.4×10E38 hosts direccionables. La ventaja con respecto a la dirección IPv4 es obvia en cuanto a su capacidad de direccionamiento.

IPv6 admite 340.282.366.920.938.463.463.374.607.431.768.211.456 (340 sextillones de direcciones) —cerca de 6,7E17 (670 mil billones) de direcciones por cada milímetro cuadrado de la superficie de La Tierra.

Su representación suele ser hexadecimal y para la separación de cada par de octetos se emplea el símbolo «:». Un bloque abarca desde 0000 hasta FFFF. Algunas reglas de notación acerca de la representación de direcciones IPv6 son:

Los ceros iniciales se pueden obviar.

Ejemplo: 2001:0123:0004:00ab:0cde:3403:0001:0063 -> 2001:123:4:ab:cde:3403:1:63

Los bloques contiguos de ceros se pueden comprimir empleando «::». Esta operación sólo se puede hacer una vez.

Más información en: http://es.wikipedia.org/wiki/IPv6

Más información sobre el direccionamiento IP en: http://es.wikipedia.org/wiki/Direcci%C3%B3n_IP

Ethernet: http://es.wikipedia.org/wiki/Ethernet

Dirección MAC

En las redes, la dirección MAC (siglas en inglés de media access control; en español «control de acceso al medio») es un identificador de 48 bits (6 bloques hexadecimales) que corresponde de forma única a una tarjeta o dispositivo de red. Se conoce también como dirección física, y es única para cada dispositivo. Está determinada y configurada por el IEEE (los últimos 24 bits) y el fabricante (los primeros 24 bits) utilizando el organizationally unique identifier. La mayoría de los protocolos que trabajan en la capa 2 del modelo OSI usan una de las tres numeraciones manejadas por el IEEE: MAC-48, EUI-48, y EUI-64, las cuales han sido diseñadas para ser identificadores globalmente únicos. No todos los protocolos de comunicación usan direcciones MAC, y no todos los protocolos requieren identificadores globalmente únicos.

Las direcciones MAC son únicas a nivel mundial, puesto que son escritas directamente, en forma binaria, en el hardware en su momento de fabricación.

En Arduino es importante poner la dirección MAC correcta para evitar problemas.

En el caso del shield ethernet, la MAC no está incluida en el integrado que implementa la pila de protocolos TCP/IP, sino que se debe configurar y eso lo hace Arduino desde el setup().

Más información en: http://es.wikipedia.org/wiki/Direcci%C3%B3n_MAC

Tutorial TCP/IP: http://www.uca.edu.sv/investigacion/tutoriales/tcp-ip.html

Nivel de Transporte: TCP y UDP

El protocolo UDP es un protocolo no orientado a conexión. Es decir cuando una máquina A envía paquetes a una máquina B, el flujo es unidireccional. La transferencia de datos es realizada sin haber realizado previamente una conexión con la máquina de destino (maquina B), y el destinatario recibirá los datos sin enviar una confirmación al emisor (la máquina A). Esto es debido a que la encapsulación de datos enviada por el protocolo UDP no permite transmitir la información relacionada al emisor. Por ello el destinatario no conocerá al emisor de los datos excepto su IP.

Su uso principal es para protocolos como DHCP, BOOTP, DNS y demás protocolos en los que el intercambio de paquetes de la conexión/desconexión son mayores, o no son rentables con respecto a la información transmitida, así como para la transmisión de audio y vídeo en real, donde no es posible realizar retransmisiones por los estrictos requisitos de retardo que se tiene en estos casos.

Más información:

La librería Ethernet de Arduino dispone de la clase EthernetUDP que permite enviar y recibir mensajes UDP. Ver https://www.arduino.cc/en/Reference/Ethernet

Al contrario que UDP, el protocolo TCP está orientado a conexión. Cuando una máquina A envía datos a una máquina B, la máquina B es informada de la llegada de datos, y confirma su buena recepción. Aquí interviene el control CRC de datos que se basa en una ecuación matemática que permite verificar la integridad de los datos transmitidos. De este modo, si los datos recibidos son corruptos, el protocolo TCP permite que los destinatarios soliciten al emisor que vuelvan a enviar los datos corruptos.

Muchos programas dentro de una red de datos compuesta por redes de ordenadores, pueden usar TCP para crear “conexiones” entre sí a través de las cuales puede enviarse un flujo de datos. El protocolo garantiza que los datos serán entregados en su destino sin errores y en el mismo orden en que se transmitieron. También proporciona un mecanismo para distinguir distintas aplicaciones dentro de una misma máquina, a través del concepto de puerto.

TCP da soporte a muchas de las aplicaciones más populares de Internet (navegadores, intercambio de ficheros, clientes FTP, etc.) y protocolos de aplicación HTTP, SMTP, SSH y FTP.

TCP usa el concepto de número de puerto para identificar a las aplicaciones emisoras y receptoras. Cada lado de la conexión TCP tiene asociado un número de puerto (de 16 bits sin signo, con lo que existen 65536 puertos posibles) asignado por la aplicación emisora o receptora. Los puertos son clasificados en tres categorías:

  • bien conocidos,
  • registrados, y
  • dinámicos/privados.

Los puertos bien conocidos son asignados por la Internet Assigned Numbers Authority (IANA), van del 0 al 1023 y son usados normalmente por el sistema o por procesos con privilegios. Las aplicaciones que usan este tipo de puertos son ejecutadas como servidores y se quedan a la escucha de conexiones. Algunos ejemplos son: FTP (21), SSH (22), Telnet (23), SMTP (25) y HTTP (80).

Los puertos registrados son normalmente empleados por las aplicaciones de usuario de forma temporal cuando conectan con los servidores, pero también pueden representar servicios que hayan sido registrados por un tercero (rango de puertos registrados: 1024 al 49151).

Los puertos dinámicos/privados también pueden ser usados por las aplicaciones de usuario, pero este caso es menos común. Los puertos dinámicos/privados no tienen significado fuera de la conexión TCP en la que fueron usados (rango de puertos dinámicos/privados: 49152 al 65535.

Los protocolos TCP y UDP usan el concepto de puerto. Un lista de los puertos bien conocidos es

Más información:

Conexión y Desconexión TCP/IP

El proceso de establecimiento de una conexión TCP se denomina “three way handshake” Durante el establecimiento de la conexión, se configuran algunos parámetros tales como el número de secuencia con el fin de asegurar la entrega ordenada de los datos y la robustez de la comunicación.

El método “three way handshake” crea una conexión entre cliente y servidor que se realiza mediante tres pasos donde el cliente y servidor intercambian paquetes SYN y ACK (acknowledgment) antes de de que la comunicación real comience.

Aunque es posible que un par de entidades finales comiencen una conexión entre ellas simultáneamente, normalmente una de ellas abre un socket en un determinado puerto TCP y se queda a la escucha de nuevas conexiones. Es común referirse a esto como apertura pasiva, y determina el lado servidor de una conexión.

El lado cliente de una conexión realiza una apertura activa de un puerto enviando un paquete SYN inicial al servidor como parte de la negociación en tres pasos. En el lado del servidor (este receptor también puede ser una PC o alguna estación terminal) se comprueba si el puerto está abierto, es decir, si existe algún proceso escuchando en ese puerto, pues se debe verificar que el dispositivo de destino tenga este servicio activo y esté aceptando peticiones en el número de puerto que el cliente intenta usar para la sesión. En caso de no estarlo, se envía al cliente un paquete de respuesta con el bit RST activado, lo que significa el rechazo del intento de conexión. En caso de que sí se encuentre abierto el puerto, el lado servidor respondería a la petición SYN válida con un paquete SYN/ACK. Finalmente, el cliente debería responderle al servidor con un ACK, completando así la negociación en tres pasos (SYN, SYN/ACK y ACK) y la fase de establecimiento de conexión. Es interesante notar que existe un número de secuencia generado por cada lado, ayudando de este modo a que no se puedan establecer conexiones falseadas (spoofing).

Más información:

La fase de finalización de la conexión utiliza una negociación en cuatro pasos (four-way handshake), terminando la conexión desde cada lado independientemente. Sin embargo, es posible realizar la finalización de la conexión en 3 fases; enviando el segmento FIN y el ACK en uno solo. Cuando uno de los dos extremos de la conexión desea parar su «mitad» de conexión transmite un segmento con el flag FIN en 1, que el otro interlocutor confirmará con un ACK. Por tanto, una desconexión típica requiere un par de segmentos FIN y ACK desde cada lado de la conexión.

Una conexión puede estar «medio abierta» en el caso de que uno de los lados la finalice pero el otro no. El lado que ha dado por finalizada la conexión no puede enviar más datos pero la otra parte si podrá.

Es importante conocer este apartado porque a pesar que esta negociación la hace el shield de Ethernet o Wifi y no se programa en Arduino, sirve para saber qué está pasando cuando Arduino actúa como cliente o servidor y poder hacer depuración cuando tenemos errores.

Todo este proceso o cualquier otro podemos verlo con una analizado de protocolos como wireshark: https://www.wireshark.org/

Práctica: Three Way Handshake

Ver con el wireshark el proceso de 3 way handshake:

Instalar wireshark de su página: https://www.wireshark.org/

Cargar el sketch de ejemplo de Arduino WebServer que puede encontrarse en Archivo — Ejemplos — Ethernet — Webserver

Desde el ordenador donde hemos instalado wireshark, abrir y comenzar a capturar datos. Para evitar la saturación de datos poner en wireshark el filtro: “ip.addr == 192.168.1.177” o la IP que hayamos configurado el Arduino.

NOTA: recordar que deben estar en la misma red y debemos configurar la IP correcta a nuestra red en el sketch Webserver.

Ver en  wireshark el intercambio de paquetes y los número de secuencia, así como la finalización de la comunicación.