Archivo de la categoría: Hardware Libre

Bootloader

Cuando cargamos un programa en Arduino desde el USB con el IDE, estamos haciendo uso del bootloader, se trata de un pequeño programa que ha sido guardado previamente en el microcontrolador de la placa y que nos permite cargar código sin necesidad de hardware adicional. El bootloader solo está activo unos segundos cuando se resetea el Arduino y después comienza el sketch que está cargado en la flash de Arduino y que hemos programado y subido a la placa.

El bootloader se ejecuta cuando el microcontrolador se enciende o se pulsa el botón reset, durante un corto espacio de tiempo espera que le llegue por el puerto serie un nuevo sketch desde el IDE de Arduino (este distingue un sketch de otra cosa porque tiene un formato definido). Si llega un sketch, este es guardado en la memoria flash y ejecutado, en caso contrario ejecuta el sketch anteriormente cargado.

La mayoría de los Arduinos tienen la función autoreset que permite al IDE de Arduino subir el código sin tener que pulsar el botón de reset.

El bootloader hace que parpadee el pin 13 (led integrado en la placa) cuando se ejecuta.

La mayoría de los microcontroladores de AVR pueden reservar una zona de la memoria flash (entre 256B a 4 KB) para el bootloader. El programa bootloader reprograma el microcontrolador para guardar en la memoria flash el código binario a través de cualquier interface disponible.

El bootloader de Arduino está programado en la memoria flash del ATMega328p y ocupa 0,5 KB de los 32KB disponibles. Este bootloader viene precargado en la memoria flash del microcontrolador y es lo que diferencia el ATMega328p de Arduino de otro que viene de fábrica.

El Arduino UNO viene con el microcontrolador ATMega328p precargado con un bootloader que permite cargar nuevo código sin un programador. El bootloader se comunica usando el protocolo STK500.

El protocolo STK500 http://www.atmel.com/Images/doc2525.pdf es propio de Atmel. Es un protocolo serie y los programadores emulan este protocolo sobre un puerto serie virtual en un USB. Originalmente STK500 fue un programador fabricado por Atmel y a raíz de ello liberaron el protocolo STK500.

En este enlace es posible obtener el código en C del protocolo STK500: http://www.atmel.com/dyn/resources/prod_documents/avr061.zip

Arduino decidió usar avrdude y STK500 serial bootloader para programar o cargar nuevos programas en Arduino sin necesidad de HW adicional. El bootloader de Arduino es esencialmente el bootloader STK500 de Atmel.

Las MCUs AVR de 8bits ATMega con interfaz USB integrado como son el ATmega16U2 y ATmega8U2, vienen de fábrica un USB bootloader en la sección de arranque de la flash. Este bootloader USB permite hacer In-System programming desde USB host controller sin la necesidad de un HW externo. En este documento se describe las funcionalidades del USB bootloader: http://www.atmel.com/Images/doc7618.pdf

El puerto serie durante el proceso de bootloader funciona a 19200 baudios.

El bootloader estándar de Arduino usa el protocolo STK500 versión 2 y por ese motivo es el valor que usamos en el IDE de Arduino.

Los comandos para “quemar” el bootloader en Arduino usan una herramienta open nsource llamada avrdude, de la que se hablará más tarde. Hay cuatro pasos a la hora de cargar el bootloader:

  • Desbloquear la sección de bootloader en el chip
  • Configurar los fuses en la MCU
  • Cargar el código del bootloader en el microcontrolador
  • Bloquear la sección del bootloader en la MCU

Todo esto es controlado por una serie de preferencia en el fichero de preferencias de Arduino: https://www.arduino.cc/en/Hacking/Preferences

Cuando el Boot Reset Fuse (BOOTRST) está configurado, el contador de programa en la memoria flash es inicializado a una dirección de memoria de un bloque en el extremo superior de la memoria (esto depende de como se hayan configurado los fuses, ver https://www.arduino.cc/en/uploads/Main/Arduino_Uno_Rev3-schematic.pdf para más información). El código que comienza no puede hacer nada, si realmente se quiere se podría poner su propio programa de allí si se utiliza un ICSP (los bootloaders por lo general no puede sobrescribirse a sí mismos).

Funciones de la AVR-lib para bootloader: http://www.nongnu.org/avr-libc/user-manual/group__avr__boot.html

El bootloader se trata de un programa especial y puede leer datos de una fuente externa como UART, I2C, CAN, etc… para reescribir el programa guardado en la memoria flash del microcontrolador. El bootloader busca un evento especial que puede ser cualquier cosa, pero para el desarrollo es más conveniente algo en el bus de datos que será puesto en la flash de la MCU. Si el bootloader ve ese evento especial, entonces entra en modo bootloading en el que hace un reflash de la memoria de programa del microcontrolador, pero si no aparece el evento, pasa el control al código del usuario.

El bootloader no consume RAM y los únicos efectos que tiene son modificaciones en los registros del hardware periferivo, pero un buen bootloader no debe dejar ningún estado perjudicial en el que encienda periféricos que malgasten energía cuando pones la MCU en modo sleep. Es una buena práctica inicializar los periféricos que se usan, así aunque el bootloader haga algo extraño, habremos inicializado como queremos que se comporte.

Avrdude es un programa para descargar y cargar a la memoria de las MCUs AVR de Atmel. Puede programar la Flash y la EEPROM y es soportado por el puerto serie.

Avrdude funciona mediante la línea de comandos y soporta los siguientes tipos de programadores:

  • Atmel’s STK500
  • Atmel’s AVRISP and AVRISP mkII devices
  • Atmel’s STK600
  • Atmel’s JTAG ICE (both mkI and mkII, the latter also in ISP mode)
  • appnote avr910
  • appnote avr109 (including the AVR Butterfly)
  • serial bit-bang adapters
  • PPI (parallel port interface)

Avrdude junto con otras herramientas se encuentran en: C:\Program Files (x86)\Arduino\hardware\tools\avr

Para cargar un sketch con avrdude en Arduino en lugar de usar el IDE, simplemente conectar el cable USB y presionar el botón de reset antes de ejecutar avrdude. Luego ejecutar con estas opciones:

  • Use -b 19200 to set the baud rate to 19200
  • The device signature reads dont seem to work so you’ll want to use -F
  • The programmer type is avrisp
  • The device type is -p m168
  • The port is whatever the FTDI chip shows up as

Un tutorial de avrdude se encuentra en http://ladyada.net/learn/avr/index.html

Más información:

Reparar el bootloader de un ATTiny: https://learn.adafruit.com/introducing-trinket/repairing-bootloader

Auto Reset

Para cargar un nuevo sketch en un microcontrolador, es necesario hacer un reset para pausar la ejecución de su programa y poder cargar el nuevo.

En el caso de los Arduinos, tienen la funcionalidad de auto-reset que está diseñado de forma que permite ser reseteado vía software conectado a un ordenador como el IDE de arduino. Una de las líneas de hardware flow control (DTR) del ATmega8U2/16U2 está conectada a la línea de reset de ATmega328 a través de un condensador de 100 nF.

El SW de Arduino usa esta capacidad para cargar el código simplemente pulsando el botón de carga en el IDE. De esta forma se sincroniza perfectamente el envío del nuevo sketch junto con el reset del microcontrolador.

Al resetear lo primero que arranca es el bootloader y puede comenzar la carga del sketch. El bootloader espera unos segundos para ver si un nuevo sketch se está cargando y en ese caso borra lo que hay en la flash y luego empieza a cargar el programa que está en la flash.

Arduino Uno dispone de un jumper soldado que se puede cortar para deshabilitar el auto-reset y luego estos se pueden soldar de nuevo para habilitarlo.

Más información en:

Bootloaders

Además del bootloader que disponemos desde el IDE de Arduino y el que viene precargado en los microcontroladores de Arduino, existen otros bootloaders con mejoras en algunos aspectos o para ofrecer nuevas características.

Codigo fuente del bootloader de Arduino: https://github.com/arduino/Arduino/tree/master/hardware/arduino/avr/bootloaders

Optiboot es un bootloader muy conocido que está más optimizado que el bootloader oficial de Arduino, permitiendo sketches mayores, carga más rápida.

Toda la información del optiboot:

HoodLoader2 te la opción de reprogramar el ATmega16u2 de un Arduino normal con sketcehs: https://github.com/NicoHood/HoodLoader2, se  trata de un proyecto muy intersante.

Como funciona el optiboot: https://code.google.com/archive/p/optiboot/wikis/HowOptibootWorks.wiki

Adaboot es otro bootloader optimizado cuyas mejoras ya las incluye optiboot. Más información: https://learn.adafruit.com/arduino-tips-tricks-and-techniques/bootloader

Optiloader es un sketch diseñado para automatizar las actualización de los bootloaders de Arduino usando otro Arduino como programador. Almacena múltiples copias de optiboot en la flash y cuando se inicia consulta al Arduino a cargar el bootloader y averigua la CPU que tiene e inicia la carga del bootloader ya programación adecuada de los fuses.

Interesante un TFTP bootloader: http://playground.arduino.cc/Code/TFTP_Bootloader_1

Más información: https://github.com/WestfW/OptiLoader

Cargar el Bootloader en Arduino

Antes de cargar el bootloader, debemos asegurarnos la placa seleccionada en el IDE para que al realizar el “quemado” del bootloader se configure el bootloader adecuado para cada placa y los comandos de carga del bootloader.

  • Arduino Uno y mini posee auto reset usando el optiboot bootloader
  • Arduino mega  posee auto reset y usa el stk500v2 bootloader

Para cargar o “quemar” el bootloader, necesitaremos un programador externo (in-system programmer). como USBtinyISP (https://learn.adafruit.com/usbtinyisp), un programador parallelo (http://arduino.cc/en/Hacking/ParallelProgrammer) u otro arduino con un programa adecuado cargado.

El programador se conecta a ICSP y debemos asegurarnos que lo conectamos correctamente y asegurarnos que hemos seleccionado la placa correcta, luego lanzar el comando herramientas > grabar secuencia de inicio desde el IDE de arduino. Este proceso tarda 15 o más segundos.

Más información:

En el fichero de preferencias están todos los datos para la carga del bootloader un función del modelo de bootloader: http://arduino.cc/en/Hacking/Preferences

Ver los ficheros boards.txt y programmers.txt en C:\Program Files (x86)\Arduino\hardware\arduino y ver es esa misma ruta los bootloader.

Más información en: https://code.google.com/p/arduino/wiki/Platforms

Para el Arduino mini hay diferencias a la hora de cargar el bootloader: http://arduino.cc/en/Hacking/MiniBootloader

Cargar sketches con un programador externo

Con un programador externo, además de cargar el bootloader a un microcontrolador, también podemos cargar los sketchs en la MCU sin necesidad del bootloader.

Esto nos permite usar el espacio completo de la memoria flash del microcontrolador, además de ahorrarnos el retraso que hay en el arranque cuando tenemos el bootloader.

Esto nos permite usar un arduino sin un bootloader y también es posible cargar el hex ya compilado en arduino con herramientas gráficas como XLoader: http://xloader.russemotto.com/ o con avrdude directamente como hemos visto anteriormente. La compilación puede ser con el IDE de Arduino o con cualquier otro compilador basado en avr-GCC

Para usar el programador externo debemos modificar ligeramente el fichero de preferencias del IDE de Arduino y debemos hacerlo con el IDE cerrado. Para encontrar el fichero de preferencias: http://arduino.cc/en/Hacking/Preferences

Debemos cambiar la línea  upload.using=bootloader por el identificador de uno de los programadores que tenemos en el fichero programmers.txt. Por ejemplo avrispmkii.

Después de hechos estos cambios, puedes cargar los sketches a la placa con el botón normal de upload, pero no es necesario pulsar el botón de reset, puesto que Arduino ya tiene la configuración de auto-reset.

Para volver a programar usando el bootloader, debemos volver a la configuración upload.using=bootloader en el fichero de preferencias y por supuesto el bootloader de nuevo en la placa.

Más información: http://arduino.cc/en/Hacking/Programmer

Ejemplos de programadores:

También es posible programar un ATtiny con una Raspberry Pi por SPI: http://www.instructables.com/id/Programming-the-ATtiny85-from-Raspberry-Pi/?ALLSTEPS

Ejercicios Bootloader

Ejercicio36-ArduinoISP: Usar un Arduino para hacer In-Sytem Programming a otro Arduino.

Usar un Arduino como pasarela para programar otro directamente sin bootloader.

ATENCIÓN –  esto eliminará el bootloader de Arduino

Tutoriales:

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio36-ArduinoISP

Qué es Arduino

Arduino es una plataforma de hardware libre, basada en una placa con un microcontrolador y un entorno de desarrollo, diseñada para facilitar el uso de la electrónica en proyectos multidisciplinares.

Hardware Libre: http://es.wikipedia.org/wiki/Hardware_libre

Por otro lado Arduino nos proporciona un  software consistente en un entorno de desarrollo (IDE) que implementa el lenguaje de programación de arduino y el bootloader ejecutado en la placa. La principal característica del software de programación y del lenguaje de programación es su sencillez y facilidad de uso

¿Para qué sirve Arduino? Arduino se puede utilizar para desarrollar elementos autónomos, conectándose a dispositivos e interactuar tanto con el hardware como con el software. Nos sirve tanto para controlar un elemento, pongamos por ejemplo un motor que nos suba o baje una persiana basada en la luz existente es una habitación, gracias a un sensor de luz conectado al Arduino, o bien para leer la información de una fuente, como puede ser un teclado, y convertir la información en una acción como puede ser encender una luz y pasar por un display lo tecleado.

Qué puede hacer Arduino? https://aprendiendoarduino.wordpress.com/2016/06/26/que-puede-hacer-arduino/

Entornos de aplicación de Arduino? https://aprendiendoarduino.wordpress.com/2016/06/26/entornos-de-aplicacion-arduino/

Hay otro factor importante en el éxito de Arduino, es la comunidad que apoya todo este desarrollo, comparte conocimiento, elabora librerías para facilitar el uso de Arduino y publica sus proyectos para que puedan ser replicados, mejorados o ser base para otro proyecto relacionado.

En resumen:

Arduino = HW + SW + Comunidad

HW Arduino

El HW de Arduino es básicamente una placa con un microcontrolador. Un microcontrolador (abreviado µC, UC o MCU) es un circuito integrado programable, capaz de ejecutar las órdenes grabadas en su memoria. Está compuesto de varios bloques funcionales, los cuales cumplen una tarea específica. Un microcontrolador incluye en su interior las tres principales unidades funcionales de una computadora: unidad central de procesamiento, memoria y periféricos de entrada/salida.

Características de un Microcontrolador:

  • Velocidad del reloj u oscilador
  • Tamaño de palabra
  • Memoria: SRAM, Flash, EEPROM, ROM, etc..
  • I/O Digitales
  • Entradas Analógicas
  • Salidas analógicas (PWM)
  • DAC (Digital to Analog Converter)
  • ADC (Analog to Digital Converter)
  • Buses
  • UART
  • Otras comunicaciones.

Arduino dispone de una amplia variedad de placas y shields para usar dependiendo de nuestras necesidades.

Un listado de placas de Arduino puede verse en https://aprendiendoarduino.wordpress.com/2016/06/26/placas-arduino/, pero en el siguiente capítulo de novedades en Arduino, se encuentra un listado de las placas de arduino.cc y arduino.org, así como otras placas compatibles con Arduino.

Un shield es una placa compatible que se puede colocar en la parte superior de los arduinos y permite extender las capacidades del arduino.

Un listado de shields para Arduino puede verse en https://aprendiendoarduino.wordpress.com/2016/06/27/shields-arduino-2/, pero en el siguiente capítulo de novedades en Arduino, se encuentra un listado de las shields de arduino.cc y arduino.org, así como otras placas compatibles con Arduino.

Las shields se pueden comunicar con el arduino bien por algunos de los pines digitales o analógicos o bien por algún bus como el SPI, I2C o puerto serie, así como usar algunos pines como interrupción. Además estas shields se alimenta generalmente a través del Arduino mediante los pines de 5V y GND.

Cada Shield de Arduino debe tener el mismo factor de forma que el estándar de Arduino con un espaciado de pines concreto para que solo haya una forma posible de encajarlo.

Además del HW de arduino.cc o arduino.org tenemos infinidad de placas que son clones o forks de las placas de Arduino y luego están las placas compatibles con Arduino, que son aquellas placas que no están basadas en las placas originales de Arduino y que puede usar otros microcontroladores, pero que se programan igual que Arduino e incluso con el mismo IDE.

Listados de placas Arduino y compatibles:

Dentro del entorno Arduino, podemos encontrar placas basadas en el microcontrolador ESP8266 con wifi integrado y pila de protocolos TCP/IP que no sigue el factor de forma de Arduino.

Placas de otros fabricantes de microcontroladores como Microchip o Mediatek con sus modelos ChipKit o LinkIt.

Y otros fabricantes de microcontroladores como ST Microelectronics que se ha aliado con arduino.org para sacar nuevos arduinos como el Arduino Otto.

Y por último un interesante artículo de David Cuartielles reflexionado sobre el HW libre y lo que supone mantener Arduino: http://david.cuartielles.com/b/2013/08/open-hasta-que-te-comen-la-merienda/

SW Arduino

El software de Arduino es un IDE, entorno de desarrollo integrado (siglas en inglés de Integrated Development Environment). Es un programa informático compuesto por un conjunto de herramientas de programación.

El IDE de Arduino es un entorno de programación que ha sido empaquetado como un programa de aplicación; es decir, consiste en un editor de código, un compilador, un depurador y un constructor de interfaz gráfica (GUI). Además incorpora las herramientas para cargar el programa ya compilado en la memoria flash del hardware.

Es destacable desde la aparición de la versión 1.6.2 la incorporación de la gestión de librerías y la gestión de placas muy mejoradas respecto a la versión anterior y los avisos de actualización de versiones de librerías y cores.

Todos lo cambios en la versiones pueden verse en: https://www.arduino.cc/en/Main/ReleaseNotes

Código fuente del IDE de Arduino está disponible en: https://github.com/arduino/Arduino/  y las instrucciones para construir el IDE desde código fuente pueden verse en: https://github.com/arduino/Arduino/wiki/Building-Arduino

Podemos también ver los problemas/bugs detectados de la version actual y hacer un seguimiento de ellos: https://github.com/arduino/Arduino/issues y en http://forum.arduino.cc/index.php?board=2.0

Con la división de Arduino, no solo se ha producido una división en las placas sino también en los IDEs. arduino.org tiene su IDE en http://www.arduino.org/downloads pero se trata de un fork del IDE de arduino.cc. En el siguiente capítulo de novedades Arduino se tratará este tema en profundidad.

En principio el IDE de arduino solo tenía soporte para las placas Arduino y los clones o forks con los mismos microcontroladores que los Arduinos oficiales. Desde la versión 1.6.2 del IDE de arduino.cc y gracias al gestor de placas, podemos añadir soporte a otros microcontroladores y placas al IDE de Arduino, como al ESP8266.

Listado de URLs para soporte de tarjetas no oficiales: https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls

Además de los clásicos IDEs hay disponibles otros IDEs oficiales. Arduino.cc tiene disponible un IDE on-line dentro del entorno Arduino Create https://create.arduino.cc/ que es una plataforma on-line integrada que permite escribir código, acceder a contenido, configurar placas y compartir proyectos, muy enfocado al Internet de las Cosas (IoT).

Por parte de arduino.org está desarrollando un nuevo IDE denominado Arduino Studio, que aun se encuentra en una versión de pruebas. Más información en http://labs.arduino.org/Arduino%20Studio y código fuente en https://github.com/arduino-org/ArduinoStudio

Además existen otros IDEs alternativos como Atmel Studio http://www.atmel.com/Microsite/atmel-studio/ que se verán a lo largo del curso.

Comunidad Arduino

Un factor del éxito de Arduino ha sido la comunidad que está apoyando este proyecto y que día a día publica nuevo contenido, divulga y responde a las dudas.

En Internet hay disponible todo tipo de cursos, tutoriales, herramientas de consulta, proyectos, etc… que ayudan a que se pueda usar Arduino con facilidad.

El primer sitio donde empezar para trabajar con Arduino es http://www.arduino.cc/ y el segundo sitio el playground de Arduino http://playground.arduino.cc/

Arduino playground es un wiki donde todos los usuarios de Arduino pueden contribuir. Es el lugar donde publicar y compartir código, diagrama de circuitos, tutoriales, trucos, cursos, etc.. y sobretodo el lugar donde buscar cuando tengamos dudas, un problema, una librería adecuada para nuestro proyecto, etc… Esa la base de datos de conocimiento por excelencia de Arduino.

Arduino playground: http://playground.arduino.cc/

Algunos apartados importantes en playground.

Otro lugar donde la comunidad colabora, se puede buscar información y preguntar las dudas que tengamos, es el foro Arduino: http://forum.arduino.cc/.

También existen lugares no oficiales de Arduino donde resolver nuestras dudas:

Arduino en las redes sociales:

Otro lugar de encuentro de la comunidad son diversos portales donde se publican proyectos con Arduino:

Por último, también hay espacios locales para la comunidad, son los llamados hacklabs hackerspace, makerspace, etc.. que aunque hay ciertas diferencias entre unos y otros, se trata de un sitio físico donde gente con intereses en ciencia, nuevas tecnologías, y artes digitales o electrónicas se puede conocer, socializar y colaborar. Puede ser visto como un laboratorio de comunidad abierta, un espacio donde gente de diversos trasfondos puede unirse. Pone al alcance de aficionados y estudiantes de diferentes niveles la infraestructura y ambiente necesarios para desarrollar sus proyectos tecnológicos.

Hacklab: https://es.wikipedia.org/wiki/Hacklab

Mejores prácticas Hackerspaces: https://elplatt.com/new-hackerspace-design-patterns

Listado de Hackerspaces: https://hackerspaces.org/wiki/List_of_ALL_Hacker_Spaces

También hay otro espacio local algo diferente que son los fablabs: es un espacio de producción de objetos físicos a escala personal o local que agrupa máquinas controladas por ordenadores.

Fablab: https://es.wikipedia.org/wiki/Fab_lab

Qué es un fablab: http://fab.cba.mit.edu/about/charter/

Este podcast explica las diferencias entre estos espacios: http://make.cesargarciasaez.com/2016/02/01/la-hora-maker-010-fablabs-makespaces-hackerspaces-y-hacklabs/

Movimiento maker: https://en.wikipedia.org/wiki/Maker_culture

aprendiendoarduino_logo

Presentación del curso

Objetivos

El objetivo de este curso es introducir al alumno en el mundo del hardware libre, los microcontroladores, Internet de las cosas, robótica y el mundo maker y DIY, utilizando la plataforma Arduino.

Al finalizar el curso el alumno será capaz de manejar la plataforma Arduino, conocer su potencial e implementar proyectos de dificultad media. Aprenderá a usar el entorno de programación utilizado por Arduino, el lenguaje de programación, realizar programas y ejecutarlos sobre Arduino.

Otros objetivos de este curso son: conocer los componentes de hardware para recibir señales externas (sensores) y controlar elementos que le rodean para interactuar con el mundo físico (actuadores).

Requisitos

Este curso parte desde cero, por lo que no son necesarios unos conocimientos previos, pero sí son recomendables conocimientos básicos de programación (especialmente C++), electricidad y electrónica.

Es recomendable un conocimiento medio de Inglés puesto que gran parte de la documentación está en Inglés.

Metodología

El curso se compone de una combinación de teoría y práctica que establecen las bases necesarias para entender la plataforma Hardware y Software de Arduino, con una duración de 30 horas. También se realizarán proyectos más complejos al final del curso donde se pondrán en práctica los conocimientos y habilidades adquiridas.

Los recursos utilizados para la realización de este curso son:

Además están disponibles otros recursos para ampliar información:

Para interactuar en el curso se puede hacer mediante:

  • twitter con el hashtag #aprendiendoarduino
  • el blog poniendo comentarios en los post con la documentación del curso
  • correo a aprendiendoarduino@gmail.com

Para realizar las prácticas de este curso se incluye un Arduino Starter Kit (https://www.arduino.cc/en/Main/ArduinoStarterKit) que contiene un Arduino Uno, una serie de sensores y actuadores y diversos elementos electrónicos necesarios para realizar las prácticas y proyectos.

La documentación será toda on line con el objetivo de mantenerla actualizada y no con un documento físico que se queda obsoleto al día siguiente. Además la documentación irá creciendo durante el curso y después de finalizar el curso seguirá estando disponible para todos. La documentación principal se encuentra en http://www.aprendiendoarduino.com/, esto permite acceder a una documentación actualizada en todo momento y a los recursos con un solo clic.

El repositorio de código del curso en github está en http://github.com/jecrespo y aumenta continuamente con los nuevos ejemplos y prácticas que se van subiendo. Las prácticas se realizarán con el Arduino Starter Kit y usaremos el libro como base para las primeras prácticas como referencia y proponiendose más ejemplos.

Todo el material entregado es en préstamo y debe cuidarse al máximo, a la hora del montaje de las prácticas se seguirán las instrucciones para evitar dañar los componentes.

Toda la documentación está liberada con licencia Creative Commons.

Reconocimiento – NoComercial – CompartirIgual (by-nc-sa): No se permite un uso comercial de la obra original ni de las posibles obras derivadas, la distribución de las cuales se debe hacer con una licencia igual a la que regula la obra original.

Aprendiendo Arduino by Enrique Crespo is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.

Organización del curso

Duración total de 30 horas. El curso se celebra del 5 al 16 de septiembre de 2016 de Lunes a Viernes en horario de 17.00 a 20.00. Se hará un descanso de 10 minutos aproximadamente a mitad de la sesión antes de empezar con la parte práctica.

Capítulos del curso:

  • Hardware Arduino
  • Software Arduino
  • Programación Arduino
  • Manejo Arduino
  • Comunicaciones IP Arduino
  • Proyectos Arduino

Detalle del temario: http://www.aprendiendoarduino.com/curso-arduino-2016-s-e/

Programación diaria del curso:

Cada día de curso de compone de 4 partes diferenciadas:

  • Saber más: Al principio de la clase se verán durante 10-15 minutos temas relacionados con Arduino propuestos por los alumnos o que hayan surgido anteriormente.
  • Primera parte: Contenidos más teóricos
  • Práctica: Después del descanso se practicará con Arduino
  • Opcional: Si da tiempo se verán contenidos adicionales

Como Empezar con Arduino

Para empezar con Arduino debes preguntarte qué sabes de electrónica y qué sabes de programación. Si no sabes de electrónica, es difícil entender cómo funcionan los elementos con los que va a interactuar la placa Arduino y si no sabes de programación no va a ser posible traducir las órdenes que deseas hacer a la electrónica para que las ejecute Arduino.

Para empezar con Arduino hay que aprender electrónica y a programar y eso es lo que vamos a aprender en este curso entre otras cosas.

Artículos de como empezar con Arduino:

Aclaraciones sobre el curso

Arduino es una plataforma ampliamente usada por aficionados (makers) y para prototipado y puede verse como un “juguete”, pero en este curso vamos a aprender a programarlo y usarlo para implantarlo en cualquier aplicación que necesitemos tanto para un uso profesional como personal/aficionado. La principal ventaja de usar una plataforma de este tipo es el rápido despliegue de una nueva aplicación y la facilidad de programación.

Arduino se trata principalmente como una herramienta para prototipado y usada en el mundo del hobby, pero aquí vamos a ir más allá y lo trataremos como una herramienta profesional que puede abarcar multitud de sectores.

A lo largo del curso se van a ver muchos conceptos de diferentes tecnologías que a priori no tienen nada que ver entre ellos: electronica digital y analogica, electricidad, programación, microcontroladores, tratamiento de señales, bases de datos, protocolos de comunicación, arquitectura de procesadores, mecánica, motores, diseño de placas electrónicas etc…

En unos casos se profundizará más y en otros menos, pero sin ponerse demasiado académico, de hecho la filosofía con la que nació  arduino es facilitar las cosas, lo que ocurre es que cuando las necesidades crecen, la programación de un microcontrolador se hace más compleja y hay que profundizar en la teoría.

Hay conceptos muy importantes a aprender y avisaré de ello y luego otros conceptos que daré las nociones y las herramientas para que quien lo necesite amplíe su conocimiento.

Este curso es totalmente dinámico y cualquier inquietud o necesidad que se tenga de un aspecto en concreto de Arduino se puede incluir en el curso.

Existe mucha documentación sobre Arduino en Internet, pero eso es un problema y a veces está desordenado o es demasiado básico, así que una parte de mi trabajo es recopilar la información más interesante, ordenarla y estructurarla.

No se va a seguir el índice en el orden que está en la documentación, sino que se van a mezclar los capítulos para ser más pedagógico. Cada día del curso se publicará un post donde se va explicar que se va a ver y un enlace a la documentación de los capítulos. Se va mezclar la práctica con la teoría para que sea el curso ameno.

Presentaciones

Arduino tiene muchos ámbitos de aplicación, desde el sector agrícola, fabricación, eficiencia energética, robótica, monitorización, educación, etc… Para que entorno tienes pensado usar Arduino?

  • Como conoces Arduino?
  • Motivaciones para aprender a usar Arduino?
  • Qué sabes de electrónica?
  • Qué sabes de programación?
  • Algún proyecto o entorno de aplicación donde usar Arduino?

Contacto

Para cualquier consulta durante el curso y en cualquier otro momento mediante email: aprendiendoarduino@gmail.com

Twitter @jecrespo: https://twitter.com/jecrespom

Y más información sobre el curso y el autor: http://www.aprendiendoarduino.com/acerca-de/

Placas Arduino

Arduino dispone de una amplia variedad de placas y shields para usar dependiendo de nuestras necesidades.

Un shield es una placa compatible que se puede colocar en la parte superior de los arduinos y permite extender las capacidades del arduino. De estas hablaremos en profundidad más adelante.

Primer Arduino:

Arduino Uno

Web: http://arduino.cc/en/Main/ArduinoBoardUno

Es la placa estándar y posiblemente la más conocida y documentada. Salió a la luz en septiembre de 2010 sustituyendo su predecesor Duemilanove con varias mejoras de hardware que consisten básicamente en el uso de un USB HID propio en lugar de utilizar un conversor FTDI para la conexión USB. Es 100% compatible con los modelos Duemilanove y Diecimila. Viene con un Atmega328 con 32Kbytes de ROM para el programa.

Este es el Arduino que vamos a usar en el curso.

Esquematico: http://arduino.cc/en/uploads/Main/Arduino_Uno_Rev3-schematic.pdf

Microcontrolador: http://www.atmel.com/devices/atmega328p.aspx

Planos del Arduino UNO: https://www.arduino.cc/en/Main/ArduinoBoardUno#documentation

Arduino Mega

Web: http://arduino.cc/en/Main/ArduinoBoardMega2560

Es con mucha diferencia el más potente y el que más pines i/o tiene, apto para trabajos ya algo más complejos aunque tengamos que sacrificar un poco el espacio, cuenta con el microcontrolador Atmega2560 con más memoria para el programa, más RAM y más pines que el resto de los modelos.

Esquematico: http://www.arduino.cc/en/uploads/Main/arduino-mega2560_R3-sch.pdf

Microcontrolador: http://www.atmel.com/devices/atmega2560.aspx

Planos del Arduino MEGA: http://www.arduino.cc/en/Main/ArduinoBoardMega2560

Arduino Ethernet

Web: http://arduino.cc/en/Main/ArduinoBoardEthernet

Incorpora un puerto ethernet, está basado en el Arduino Uno y nos permite conectarnos a una red o a Internet mediante su puerto de red.

Arduino Due

Web: http://arduino.cc/en/Main/ArduinoBoardDue

Arduino con la mayor capacidad de procesamiento, basado en un microcontrolador de 32 bit y arquitectura ARM: Atmel SAM3X8E ARM Cortex-M3 CPU. Este arduino está alimentado a 3.3V y dado que gran parte de los shields, sensores, actuadores para Arduino y compatible son a 5V lo limita, pero cada vez se ven más elementos donde se puede elegir el voltaje entre 3.3 y 5V.

Importante: 12-bit ADC

Microcontrolador: http://www.atmel.com/devices/sam3x8e.aspx

Arduino Leonardo

Web: http://arduino.cc/en/Main/ArduinoBoardLeonardo

La diferencia de este arduino con el resto es que trae un único MCU ATmega32u4 que tiene integrado la comunicación USB, lo que elimina la necesidad de un segundo procesador. Esto tiene otras implicaciones en el compartimento del arduino al conectarlo al ordenador, lo que no lo hace apto para iniciarse con él.

Microcontrolador: http://www.atmel.com/devices/atmega32u4.aspx

Arduino Micro

Web: http://arduino.cc/en/Main/ArduinoBoardMicro

También basado en el ATmega32u4 pero mucho más compacto.

Arduino Mini

Web: http://arduino.cc/en/Main/ArduinoBoardMini

Versión miniaturizada de la placa Arduino UNO basado en el ATMega328. Mide tan sólo 30x18mm y permite ahorrar espacio en los proyectos que lo requieran. Las funcionalidades son las misma que Arduino UNO. Necesita un programador para conectarlo al ordenador: http://arduino.cc/en/Main/USBSerial

Arduino Lilypad

Web: http://arduino.cc/en/Main/ArduinoBoardLilyPad

Diseñado para dispositivos “wearables” y e-textiles. Para coser con hilo conductor e instalarlo sobre prendas.

Nuevos Arduinos incorporados recientemente

Arduino 101

Web: https://www.arduino.cc/en/Main/ArduinoBoard101 es el sucesor del Arduino UNO con procesador Intel Curie Quark de 32 bit diseñado para ofrecer el mínimo consumo de energía, 384 KB de memoria flash, 80 KB de SRAM, un sensor DSP integrado, bluetooth de baja energía, acelerómetro y giroscopio de 6 ejes.

Video de 101: https://blog.arduino.cc/2016/01/13/unboxing-and-setup-of-arduino-101/

Código Firmware: https://github.com/01org/corelibs-arduino101 que no hace falta instalarlo porque ya viene integrado en el IDE de arduino.cc y desde el gestor de librerías se instala en: C:\Users\<user>\AppData\Local\Arduino15\packages\Intel\hardware\arc32\1.0.5
Foro: http://forum.arduino.cc/index.php?board=103.0

Genuino MKR1000

Web: https://www.arduino.cc/en/Main/ArduinoMKR1000 version para IoT con procesador Atmel ARM Cortex M0+ de 32bits ATSAMW25 que es el mismo procesador que Genuino Zero pero con wifi integrado, chip de cifrado y antena integrada.

Arduino Leonardo ETH

Web: http://www.arduino.org/products/boards/4-arduino-boards/arduino-leonardo-eth es un Arduino Leonardo con ethernet proporcionado por el controlador W5500. Se trata de la versión actualizada del Arduino Ethernet.
Documentación: http://labs.arduino.org/Arduino%20leonardo%20eth
Getting Started: http://labs.arduino.org/Getting+Started+with+Arduino+Leonardo+Eth

Otros arduinos oficiales

Arduino.cc products: https://www.arduino.cc/en/Main/Products

Genuino products: https://www.arduino.cc/en/Main/GenuinoProducts

Arduino.org products: http://www.arduino.org/products

Más información de las diferentes placas de arduino.cc y arduino.org ver: https://aprendiendoarduino.wordpress.com/2016/06/26/novedades-en-arduino-arduino-cc-y-arduino-org/

Como distinguir un arduino oficial de una copia: http://arduino.cc/en/Products/Counterfeit

Guía para comparar Arduino:  https://learn.sparkfun.com/tutorials/arduino-comparison-guide

Plataformas open source para wearables: https://openwearabletech.com/open-source-wearable-platforms-review/

Cómo funciona Arduino

Hay muchos otros microcontroladores y plataformas de desarrollo, pero Arduino, además de simplificar el trabajo de programación, ofrece:

    • Software Multiplataforma: Puede trabajar en todas las plataformas (Mac, Windows, Linux).
    • Asequible: Puedes encontrar placas por menos de 15 euros.
    • Entorno de programación simple y directo.
    • Sencillez: Es muy fácil duplicar y modificar las placas y además es legal, al ser open – source hardware, bajo licencia Creative Commons  puedes reunir los componentes y crearte tu propia placa, no pudiendo en este caso llamarla Arduino, nombre registrado para las originales producidas en Italia.
    • Flexible: Añadirle shields (módulos) en función del uso que se le vaya a requerir (conexión a Internet, control de motores, etc.) es muy fácil, y dispones de una gran cantidad de ellos para su compra online.
    • Software ampliable y de código abierto, bajo licencia Creative Commons.

El funcionamiento de la placa a muy grosso modo, para no extendernos con elementos técnicos, se compone de:

  • Conexiones de Entrada: A través de sensores conectados en los pines de entrada, Arduino recibe datos del exterior (entorno)
  • Microcontrolador: Es el cerebro de Arduino, con los datos recibidos del entorno (conexiones de entrada) es donde, a través del lenguaje de programación (open source y con una curva de aprendizaje rápida), nosotros le decimos cómo interpretar la información, qué parámetros buscar y comparar, y por último, qué acciones tomar a modo de respuesta.
  • Conexiones de Salida: Dependiendo del proyecto en el que esté trabajando, y en función de las órdenes que le hayamos dado programando el microcontrolador, Arduino puede conectarse con diversos actuadores (relés, pantallas, motores,…), y sistemas lógicos (otras placas, ordenadores,…) para provocar la respuesta que necesitamos.

Placa Arduino https://www.arduino.cc/en/Guide/BoardAnatomy:

Arduino socializa la tecnología, supongamos que desde hace un tiempo tenemos una buena idea que no se puede llevar a cabo porque necesita un conocimiento de electrónica en mayor o menor medida, pero que actualmente no tenemos. Esa idea, habrá pasado de proyecto a obstáculo.

Arduino ayuda a poder hacer el proyecto gracias al open source puesto que tenemos mucha información publicada por la comunidad que se ocupa de recopilar y actualizar de forma gratuita y continua en la red.

Leyendo esos manuales y practicando con el material que han proporcionado (Arduino y la comunidad), comprobamos que en un intervalo de tiempo pequeño (gracias a su corta curva de aprendizaje) somos capaces de ponernos manos a la obra y atrevernos a ir escalando pequeños obstáculos y paredes hasta que encontremos nuestro límite o el del propio material.

También gracias a la comunidad disponemos de mucho código y sobretodo de librerías que nos facilitan la programación abstrayendonos de los aspectos más complejos de bajo nivel y pudiendonos centrar en nuestra idea.

Sin darte cuenta, Arduino proporciona un punto de entrada allí donde antes no veíamos solución, ofrece una primera plataforma de apoyo sobre la que ir apoyando y cimentando las distintas etapas que el proyecto vaya necesitando, a medida que vamos practicando, solucionando problemas y adquiriendo experiencia.

Dada la versatilidad de Arduino que hemos visto anteriormente, encuentras en Internet proyectos tan dispares como un sistema de riego que detecte cuándo necesitan agua las plantas y nos avise al móvil cuando las riega, una alarma contra incendios, escapes de gas e intrusos, un sistema de ventilación automático para que la casa mantenga constante la temperatura, un sistema de control de los ascensores en un edificio, estaciones meteorológicas totalmente autónomas, pilotos automáticos para drones (UAVs), impresoras 3D y por supuesto, el IoT (Internet of Things)

Para comenzar con Arduino, un libro recomendado escrito por uno de los cofundadores de Arduino es: https://store.arduino.cc/index.php?main_page=product_info&products_code=B000001

Qué es Arduino y Hardware Libre

Arduino es una plataforma de hardware libre, basada en una placa con un microcontrolador y un entorno de desarrollo, diseñada para facilitar el uso de la electrónica en proyectos multidisciplinares.

Hardware Libre: http://es.wikipedia.org/wiki/Hardware_libre

Arduino es una plataforma abierta que facilita la programación de un microcontrolador. Los microcontroladores nos rodean en nuestra vida diaria, usan los sensores para escuchar el mundo físico y los actuadores para interactuar con el mundo físico. Los microcontroladores leen sobre los sensores y escriben sobre los actuadores.

El hardware de Arduino consiste en una placa con un microcontrolador generalmente Atmel AVR, puertos de comunicación y puertos de entrada/salida. Los microcontroladores más usados en las plataformas Arduino son el Atmega168, Atmega328, Atmega1280, ATmega8 por su sencillez, pero se está ampliando a microcontroladores Atmel con arquitectura ARM y también Intel.

Por otro lado Arduino nos proporciona un  software consistente en un entorno de desarrollo (IDE) que implementa el lenguaje de programación de arduino y el bootloader ejecutado en la placa. La principal característica del software de programación y del lenguaje de programación es su sencillez y facilidad de uso.

Arduino promete ser una forma sencilla de realizar proyectos interactivos para cualquier persona. Para alguien que quiere hacer un proyecto, el proceso pasa por descargarnos e instalar el IDE buscar un poco por internet y simplemente hacer “corta y pega” del código que nos interese y cargarlo en nuestro HW. Luego hacer los cableados correspondientes con los periféricos y ya tenemos interaccionando el software con el Hardware. Todo ello con una inversión económica mínima: el coste del Arduino y los periféricos.

¿Para qué sirve Arduino? Arduino se puede utilizar para desarrollar elementos autónomos, o bien conectarse a otros dispositivos o interactuar con otros programas, para interactuar tanto con el hardware como con el software. Nos sirve tanto para controlar un elemento, pongamos por ejemplo un motor que nos suba o baje una persiana basada en la luz existente es una habitación, gracias a un sensor de luz conectado al Arduino, o bien para leer la información de una fuente, como puede ser un teclado, y convertir la información en una acción como puede ser encender una luz y pasar por un display lo tecleado.

Con Arduino  es posible automatizar cualquier cosa para hacer agentes autónomos (si queréis llamarles Robots también), controlar luces y dispositivos, o cualquier otra cosa que se pueda imaginar, es posible optar por una solución basada en Arduino. Especialmente en desarrollos de dispositivos conectados a Internet, Arduino es una solución muy buena.

Arduino es una tecnología que tiene una rápida curva de entrada con básicos conocimientos de programación y electrónica, que permite desarrollar proyectos en el ámbito de las Smart Cities, el Internet de las cosas, dispositivos wearables, salud, ocio, educación, robótica, etc…

Definición de Arduino en la web oficial: https://www.arduino.cc/en/Guide/Introduction

Otras definiciones de Arduino:

Que es arduino en un minuto (video): http://learn.onemonth.com/what-is-arduino

Hay otro factor importante en el éxito de Arduino, es la comunidad que apoya todo este desarrollo, comparte conocimiento, elabora librerías para facilitar el uso de Arduino y publica sus proyectos para que puedan ser replicados, mejorados o ser base para otro proyecto relacionado.

En resumen:

Arduino = HW + SW + Comunidad

Mitos sobre Arduino que todo el mundo cree y no son verdad: https://www.baldengineer.com/5-arduino-myths.html

Primer Arduino:

Arduino simplifica el trabajo con microcontroladores y ofrece las siguientes ventajas: barato, multiplataforma, entorno de programación sencillo, software libre y extensible mediante librerías en C++, hardware libre y extensible.

Al trabajar con Arduino, se manejan conceptos de diferentes tecnologías que a priori no tienen nada que ver entre ellos pero que los unifica: electronica digital y analogica, electricidad, programación, microcontroladores, tratamiento de señales, protocolos de comunicación, arquitectura de procesadores, mecánica, motores, diseño de placas electrónicas etc…

Diez razones para usar Arduino: http://www.modulo0tutoriales.com/10-razones-para-usar-arduino/

Importancia de Arduino en el mundo Hardware

Arduino y por extensión el hardware libre se ha convertido en un elemento importante no solo en el mundo maker sino también el la industria de fabricación de hardware.

Este enlace hace un estudio del estado de la industria del hardware en 2016. Más empresas están desarrollando productos innovadores y tenemos disponibles mejores herramientas para el prototipado y fabricación. El acceso a esas herramientas y el conocimiento alrededor de ellas es cada vez más universal. De estas herramientas destaca Arduino, Raspberry Pi y las impresoras 3D.

Enlace: http://blog.fictiv.com/posts/2016-state-of-hardware-report

Cabe destacar de este estudio que el 56% de las empresas usan Arduino como herramienta eléctrica de prototipado y el 91% de las empresas usan impresoras 3D como herramienta mecanica de prototipado.

Arduino también se está utilizando ampliamente en la docencia y en la investigación. Pero Arduino empezó como herramienta sencilla para artistas y usarlo en sus obras de arte, ejemplo de uso de Arduino en el Arte https://vimeo.com/149774067

Antes de Arduino

Antes de Arduino, eran necesarios los programadores para cada MCU, lenguaje de programación ensamblador usando las instrucciones propias de la MCU y materiales caros.

Ejemplos:

Una plataforma muy extendida para aprender a programar microcontroladores era Basic Stamp.

Tabla de comparación de los microcontroladres Basic Stamp: https://www.parallax.com/sites/default/files/downloads/BASICStampComparisonChart-0114.pdf

Lenguaje de programación Pbasic: http://en.wikipedia.org/wiki/PBASIC

Guia de incio muy intersante de parallax para inicio con Basic Stamp: http://www.rambal.com/descargas/libros/WAM-v3.0-Spanish-v1.0.pdf

Placas de desarrollo con Basic Stamp: https://www.parallax.com/catalog/microcontrollers/basic-stamp/boards

Ejemplo de domotica con basic stamp: http://www.aprenderobotica.com/m/group/discussion?id=4310109%3ATopic%3A947

Interesante comparación entre Basic stamp y arduino: http://todbot.com/blog/2006/09/25/arduino-the-basic-stamp-killer/

Filosofía Arduino

Por último para entender bien lo que es Arduino, es recomendable ver el documental de Arduino de unos 30 minutos de duración. Arduino the Documentary: http://blog.arduino.cc/2011/01/07/arduino-the-documentary-now-online/

Arduino IoT Manifesto: https://create.arduino.cc/iot/manifesto/

We believe that the best way to grow this environment is to develop open source platforms and protocols to propose as an alternative to the myriad of proprietary hardware and software platforms each one of the big players are developing.
We believe in creating tools that make these technologies understandable to the most diverse set of people as possible, this is the only way to make sure innovation benefits most of humanity.
We propose that connected devices should be: Open, Sustainable and Fair.

We foresee a world with billions of connected smart objects. These smart objects will be composed and orchestrated, thus making the Internet of Things a reality. The IoT will be the eyes, noses, arms, legs, hands of a new, extended, cyber body. The nervous system of such a body will be the Internet, allowing the interaction with a distributed intelligence made of hardware processors and human minds, behaviors, software procedures, and services, shared in the Cloud.