Archivo de la categoría: Práctica

IoT en 90 Minutos

Vamos a crear un sistema IoT sencillo utilizando una placa basada en ESP8266, la plataforma Thingspeak para registrar los datos y la APP Blynk para controlar y monitorizar desde el móvil.

El objetivo es:

  • Monitorizar la temperatura y humedad de una sala remotamente desde el móvil
  • Encender desde el móvil la iluminación de la sala
  • Registrar todos los datos históricos de temperatura y humedad
  • Registrar las veces que se abre una puerta
  • Mandar avisos por alta temperatura. 
  • Mandar avisos cuando el sensor de puerta se abra.

Los avisos o notificaciones pueden ser:

Material Necesario

Hardware:

  • Wemos D1 mini
  • Sensor DHT11
  • Led + resistencia 220 ohms (para simular la iluminación) o Relé para la iluminación
  • Pulsador + Resistencia 10 kohms  (para simular la apertura de la puerta) o sensor magnético/infrarrojos.

Coste aproximado: 5 – 20 € dependiendo del material usado.

Software:

Coste del software y licencias: 0 €

Conexión Hardware

Esquema de conexión:

Pines utilizados:

  • D4: Led y también es el led integrado de la placa
  • D3: pulsador/puerta, tiene una resistencia de pull up integrada: OJO, este pin va al GPIO0 que control el arranque, asegurarse de no estar a masa/pulsado al reiniciar o cargar un nuevo programa
  • D2: sonda DHT11

El pulsador simula la apertura de la puerta y el led simula la iluminación de la sala.

Blynk

Blynk es una plataforma que permite que cualquiera pueda controlar fácilmente su proyecto Arduino con un dispositivo con sistema iOS o Android. Los usuarios tendrán ahora la posibilidad de crear una interfaz gráfica de usuario de “arrastrar y soltar” para su proyecto en cuestión de minutos y sin ningún gasto extra.

Blynk vendría a ser como tener una protoboard en tu dispositivo móvil, tablet o teléfono, que cuenta con todo lo que necesites usar, desde deslizadores y pantallas a gráficos y otros widgets funcionales que se pueden organizar en la pantalla un Arduino. Además te da la opción de poder recopilar datos de los sensores que montes en un proyecto. Funciona nada más sacarlo de la caja y conectarlo a la placa por Internet.

Arquitectura de Blynk:

Thingspeak

ThingSpeak es un plataforma de Internet of Things (IoT) que permite recoger y almacenar datos de sensores en la nube y desarrollar aplicaciones IoT. Thinkspeak también ofrece aplicaciones que permiten analizar y visualizar tus datos en MATLAB y actuar sobre los datos. Los datos de los sensores pueden ser enviados desde Arduino, Raspberry Pi, BeagleBone Black y otro HW.

Web: https://thingspeak.com/

Precios: https://thingspeak.com/prices

Pasos a seguir

Crear una cuenta en Thingspeak y configurar

Web: https://thingspeak.com/users/sign_up

Tutoriales:

Crear cuenta:

Crear un Nuevo Canal llamado: “Curso IoT”

Crear 3 Fields:

  • Temperatura – Guarda los datos de temperatura
  • Humedad – Guarda los datos de humedad
  • Puerta – Guarda las aperturas de puerta

Guarda la API Key y el número de canal

Instalar Blynk 

Getting Started: https://blynk.io/en/getting-started

Docs: https://docs.blynk.cc/

Instalar Blynk en el móvil: https://blynk.io/

Crear una cuenta en Blynk

Crear un nuevo proyecto llamado “IoT en 90 minutos”

Elegir Hardware, en este caso “Wemos D1 Mini”

Guardar el Auth Token. Auth Token es un identificador único que se necesita para conectar su hardware a su smartphone. Cada nuevo proyecto que cree tendrá su propio Auth Token. Obtendrá Auth Token automáticamente en su correo electrónico después de la creación del proyecto. También se puede copiar manualmente.

Añadir 3 widgets:

  • Un botón (Conectado al Pin D4)
  • Dos Gauge en los pines Virtuales V0 y V1 para temperatura y humedad

Virtual Pin: http://help.blynk.cc/en/articles/512061-what-is-virtual-pins

Configuración del Gauge:

  • Temperatura pin virtual V0
  • Humedad pin virtual V1
  • Modo push
  • Label: C para temperatura y % para Humedad

Configuración del Botón. poner en modo switch:

Aspecto final de la APP:

Ejecutar el programa

 

Preparar IDE Arduino

Instalar el IDE de Arduino:

Instalar el soporte para las placas basadas en ESP8266 en el IDE de Arduino

Instalar librerías necesarias en IDE Arduino desde el gestor de librerías:

 Realizar montaje de Wemos D1 mini

Personalizar el Firmware y Ejecutarlo

Configurar la Vista Pública en Thingspeak

Crear una vista pública, para ello en el canal ir a “sharing” y seleccionar “Share channel view with everyone”

Configurar la vista pública de Thingspeak, es una especie de dashboard donde pondremos:

  • Gráfica de Temperatura (Tipo Spline)
  • Display numérico Temperatura
  • Gráfica de Humedad  (Tipo Spline)
  • Display numérico Humedad
  • Gráfica apertura de puerta (Tipo Step)
  • Lamp Indicator, para ver el estado de la puerta abierto/cerrado
  • Un histograma para ver la variación de la temperatura

La vista debe quedar como esta: https://thingspeak.com/channels/635134

Configurar las Notificaciones en Thingspeak

Configurar avisos en Thingspeak cuando la temperatura sea mayor de 24 grados y cuando se abra la puerta. Para ello usaremos estas utilidades de thingspeak.

Notificaciones posibles:

  • Mandar un mensaje al panel: https://www.aprendiendoarduino.com/servicios/mensajes/index.html, servicio de #aprendiendoarduino para hacer una demo.
  • Enviar un mensaje a Telegram mediante un bot al canal https://t.me/aprendiendoarduino. Para ello es necesario crear un bot, añadirlo al canal y usar su API KEY desde thingspeak con ThingHTTP
  • Enviar un mensaje al canal #arduino_iot de https://aprendiendoarduino.slack.com/
  • Mandar un tweet usando ThingTweet, para ello debemos enlazar nuestra cuenta de Twitter.
  • Mandar un email con mailgun https://www.mailgun.com/, para ello debemos darnos de alta en mailgun y usar la API Key para que dispare el webhook configurado en ThingHTTP y mande un email
  • Para cualquier otra interacción se puede usar IFTTT. Se crea un webhook que se usa desde ThingHTTP y desde IFTTT disparamos el servicio que queramos.
  • Y cualquier otra que disponga de un webhook o API

Primero debe configurarse ThingHTTP para que llame a una API o webhook que dispare la notificación que deseamos. Para ello deberemos darnos de alta en el servicio que deseemos.

Para mandar un mensaje al panel: https://www.aprendiendoarduino.com/servicios/mensajes/index.html debo llamar a esta API:

Crear un nuevo ThingHTTP llamado “Manda Mensaje Alta Temperatura” y poner:

Crear un nuevo ThingHTTP llamado “Manda Mensaje Puerta Abierta” y poner:

NOTA: si no funciona la llamada al servicio de mensajes, mandar un correo a aprendiendoarduino@gmail.com

Una vez creados los elementos ThingHTTP que dispara la notificación queda crear los react, que son las condiciones en la que se disparan las notificaciones, donde diremos en qué condiciones se mandan las notificaciones. En nuestro caso:

  • Temperatura > 24 grados solo la primera vez que pase (Run action only the first time the condition is met: Trigger the action if the condition was previously false and is currently true.)
  • El valor del canal es 1 (Puerta abierta) cada vez que pase.

Crear un nuevo react llamado “Alta Temperatura IoT 90 minutos” con los siguientes parámetros:

Crear un nuevo react llamado “Puerta Abierta IoT 90 minutos” con los siguientes parámetros:

Probar que se muestran los mensajes en el panel https://www.aprendiendoarduino.com/servicios/mensajes/index.html

Si quisiéramos mandar un tweet, simplemente seleccionar en Action “ThingTweet” y poner el texto del tweet.

Identificación Horizontales Demo

Las horizontales o Building Blocks usados en IoT:

Para la demo:

  • Devices: Wemos D1 mini + sensor temperatura + pulsador + led + relé
  • Infraestructura de comunicación: Wifi
  • Gateway: Punto de Acceso Wifi
  • Protocolo: API HTTP y MQTT (transparente al usar las librerías de Blynk y Thingspeak)
  • Plataforma: Thingspeak y Blynk
  • Servicios: Almacenamiento de datos, gráficas, disparo de eventos y análisis de datos por Thingspeak, monitorización móvil por Blynk, notificaciones por IFTTT o plataforma propia.

Limitaciones de la solución utilizada:

  • Máximo número de envíos a plataforma: 15 segundos
  • Datos almacenados solo hasta un año o 3 millones de registros
  • Límite en el cálculo de datos
  • Gráficas simples
  • Depender de terceros para las notificaciones

Prácticas: Clases y Objetos

Montaje Arduino UNO:

Montaje Wemos:

Ejercicio19 – Clase Contador

Hacer un programa que cuente las pulsaciones de los botones A y B usando la clase contador guardada en un fichero “Contador.h”

Solución: https://codeshare.io/5QYNeq

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio19-Clase_Contador

Si solo usamos funciones como en el ejercicio 17, necesito dos funciones detecta flanco y no puedo usar solo una porque si llamo a una y a otra simultáneamente el valor static se mantiene entre la llamada de una y otra lo que hace que falle. Para resolver este problema, hacer una clase DetectaFlanco y entonces puedo reutilizar el código ya que cada vez que instancio una nueva clase es como una función nueva.

NOTA: la clase se puede definir en un fichero “Contador.h” o dentro del mismo fichero .ino, ver ejemplo en https://github.com/jecrespo/aprendiendoarduino-Curso_Programacion_Arduino_2019

Ejercicio20 – Clase Detecta Flanco

Hacer el programa anterior pero creando  una clase llamada DetectaFlanco en un fichero “DetectaFlanco.h”

Solución: https://codeshare.io/Gb6K0M

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio20-Clase_Detecta_Flanco

NOTA: Esta clase se puede definir en un fichero “DetectaFlanco.h” y otro “DetectaFlanco.cpp” ver ejemplo en https://github.com/jecrespo/aprendiendoarduino-Curso_Programacion_Arduino_2019

Ejercicio21: Sensor DHT

Para entender mejor las clases y objetos y antes de entrar en el apartado de librerías y cómo crearlas, vemos un ejemplo de la librería DHT22 para las sondas de temperatura y humedad, de forma que entendamos que cuando la usamos para una sonda, lo que hacemos es instanciar un objeto de tipo sonda DHT22 y cuando llamamos al método readTemperature() estamos ejecutando la función que consulta la temperatura. También vamos a ver cómo se estructura la clase en el fichero de cabecera y en el de contenido.

El código de la librería lo tenemos en https://github.com/adafruit/DHT-sensor-library y vemos que tenemos dos ficheros:

En el fichero de cabecera tenemos la definición de la clase:

class DHT {
  public:
   DHT(uint8_t pin, uint8_t type, uint8_t count=6);
   void begin(void);
   float readTemperature(bool S=false, bool force=false);
   float convertCtoF(float);
   float convertFtoC(float);
   float computeHeatIndex(float temperature, float percentHumidity, bool isFahrenheit=true);
   float readHumidity(bool force=false);
   boolean read(bool force=false);

 private:
  uint8_t data[5];
  uint8_t _pin, _type;
  #ifdef __AVR
    // Use direct GPIO access on an 8-bit AVR so keep track of the port and bitmask
    // for the digital pin connected to the DHT.  Other platforms will use digitalRead.
    uint8_t _bit, _port;
  #endif
  uint32_t _lastreadtime, _maxcycles;
  bool _lastresult;

  uint32_t expectPulse(bool level);
};

Y en el fichero de definiciones DHT.cpp tenemos el código.

Constructor:

 
DHT::DHT(uint8_t pin, uint8_t type, uint8_t count) {
  _pin = pin;
  _type = type;
  #ifdef __AVR
    _bit = digitalPinToBitMask(pin);
    _port = digitalPinToPort(pin);
  #endif
  _maxcycles = microsecondsToClockCycles(1000);  // 1 millisecond timeout for
                                                 // reading pulses from DHT sensor.
  // Note that count is now ignored as the DHT reading algorithm adjusts itself
  // basd on the speed of the processor.
}

Método begin():

 
void DHT::begin(void) {
  // set up the pins!
  pinMode(_pin, INPUT_PULLUP);
  // Using this value makes sure that millis() - lastreadtime will be
  // >= MIN_INTERVAL right away. Note that this assignment wraps around,
  // but so will the subtraction.
  _lastreadtime = -MIN_INTERVAL;
  DEBUG_PRINT("Max clock cycles: "); DEBUG_PRINTLN(_maxcycles, DEC);
}

Método readTemperature(), que llama a la función read() que es la que hace toda la operación de consultar a la sonda y guarda en la propiedad privada data la información leída y readTemeprature() se encarga de darle formato en función del tipo de sonda y devolver el float con la temperatura:

 
float DHT::readTemperature(bool S, bool force) {
  float f = NAN;

  if (read(force)) {
    switch (_type) {
    case DHT11:
      f = data[2];
      if(S) {
        f = convertCtoF(f);
      }
      break;
    case DHT22:
    case DHT21:
      f = data[2] & 0x7F;
      f *= 256;
      f += data[3];
      f *= 0.1;
      if (data[2] & 0x80) {
        f *= -1;
      }
      if(S) {
        f = convertCtoF(f);
      }
      break;
    }
  }
  return f;
}

Este esquema explica como funciona este sensor y el protocolo de comunicación. La librería implementa el protocolo y facilita el uso de la sonda con Arduino.

En un ejemplo de uso de esta clase, primero hacemos un include del fichero, luego instanciamos un nuevo objeto sonda llamado dht. En el setup hacemos el begin() para iniciarlo y en el loop llamamos a los métodos de leer temperatura y humedad.

#include "DHT.h"
DHT dht(DHTPIN, DHTTYPE);

void setup() {
  dht.begin();
}
void loop() {
  float h = dht.readHumidity();
  float t = dht.readTemperature();
}

Partiendo del ejemplo de la librería llamado DHTtester, adaptarlo para el montaje de Arduino Uno pero usando dos sondas DHT11 en los pines 11 y 12

Solución: https://codeshare.io/arJ0nv

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio21-DHT

Prácticas: Funciones Definidas por Usuario

Montaje Arduino UNO:

Montaje Wemos:

Ejercicio15 – Funciones

Hacer un menú interactivo con Arduino. Con todo lo visto anteriormente, hacer un ejemplo de un menú interactivo donde se dan 4 opciones y pulsando cada una de ellas se ejecuta una acción concreta. Si el valor pulsado no es ninguna de las opciones avisar y volver a mostrar el menú hasta que se pulse una opción correcta. Usar funciones para cada una de las opciones.

Opciones:

  • 1 – Encender led siguiente (paso por referencia la posición del led)
  • 2 – Sacar por pantalla el LCD que está encendido
  • 3 – Sonar el buzzer 5 segundos
  • 4 – Fin (entra en un bucle infinito y no sale)

Solución: https://codeshare.io/5NYRvm

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio15-Funciones

Ejercicio16 – Función Detecta flanco

Señales digitales:

Hacer una función que detecte flancos ascendentes y otras flancos descendentes, para ser reutilizada en otros proyectos.

Unificar estas dos funciones en una única función llamada detectaFlanco() donde le paso el pin y devuelve 1 si es flanco ascendente, -1 si es flanco descendente y 0 si no hay cambio de estado.

Ponerla en un ejemplo con alguno de los botones, usando este loop:

 
void loop() {
  int flanco = detectaFlanco(PIN_BOTON_A);
  if (flanco == 1)
    Serial.println("flanco ascendente");
  if (flanco == -1)
    Serial.println("flanco descendente");
}

Solución: https://codeshare.io/amkrV1

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio16-Funcion_Detecta_Flanco

Ejercicio17 – Función Detecta flanco dos pines

Para ejercicio detecta flanco, probar la función con los dos botones en los pines 2 y 3. La función detecta flanco solo funciona con un pulsador, pero cuando se intenta usar con dos pulsadores ya no funciona. Comprobar porqué.

Solución: https://codeshare.io/5NYrqr

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio17-Funcion_Detecta_Flanco_2Pines

La función para detectar flanco es la base para luego entender las clases y objetos y luego las librerías.

La solución es crear un objeto detecta flanco, para ello crear una clase y se puede distribuir mediante una librería como https://github.com/jecrespo/Detecta_Flanco_Libreria que se puede descargar desde https://github.com/jecrespo/Detecta_Flanco_Libreria/releases/tag/Version_1.0:

#include <DetectaFlanco.h>
#define PIN_BOTON_A 2
#define PIN_BOTON_B 3

DetectaFlanco df1(PIN_BOTON_A);
DetectaFlanco df2(PIN_BOTON_B);

void setup() {
  Serial.begin(9600);
  df1.inicio(INPUT_PULLUP);
  df2.inicio(INPUT);
}

void loop() {
  // put your main code here, to run repeatedly:
  int flanco1 = df1.comprueba();
  int flanco2 = df2.comprueba();

  if (flanco1 == 1)
    Serial.println("Flanco asc A");

  if (flanco1 == -1)
    Serial.println("Flanco desc A");

  if (flanco2 == 1)
    Serial.println("Flanco asc B");

  if (flanco2 == -1)
    Serial.println("Flanco asc B");

  delay(50); //Evitar rebotes
}

Ejercicio18 – Dado Digital

Usando las funciones de números aleatorios hacer un dado digital que genere un número aleatorio entre 1 y 6 y encienda un led aleatorio cada vez que se pulse el botón A. Usar el montaje del Wemos D1 mini

Usar la función de detección de flanco hecha en el anterior ejercicio.

Random Numbers

  • randomSeed() – Inicializa el generador de número pseudo-aleatorios
  • random() – Genera números pseudo-aleatorios

Paso 1 – Generar un valor aleatorio entre 1 y 6 al pulsar el botón

Paso 2 – Hacer girar el anillo led haciendo el efecto y que baje la velocidad

Paso 2 – Dejar fijo el nuevo número aleatorio

Solución: https://codeshare.io/anmypv

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio18-Dado

Prácticas: Estructuras Propias Arduino

Montaje Arduino UNO:

Montaje Wemos:

Señales digitales:

Resultado de imagen de flip-flop-periodo.gif

Ejercicio13 – Calcular Tiempo Pulso

Vamos a calcular el tiempo entre dos pulsaciones de un pulsador, esto tienes muchas aplicaciones para calcular tiempos entre dos señales digitales, p.e. calcular si pasa una persona, bicicleta, coche o camión en un paso con una fotocelula: 

Ejemplo: https://www.mytienda.es/p225/fotocelulas-sensor-infrarrojo-garaje

Para ello vamos a usar la función PulseIn: https://www.arduino.cc/en/Reference/PulseIn 

Ejemplo de PulseIn para calcular distancia con un sensor ultrasónico: https://www.luisllamas.es/medir-distancia-con-arduino-y-sensor-de-ultrasonidos-hc-sr04/

  • Paso 1 – Usando la función pulsein calcular el tiempo que mantengo pulsado el botón B y mostar por la consola.
  • Paso 2 – Usar ese tiempo para distinguir entre pulsación corta < 2 segundos y pulsación larga >= 2 segundos.
  • Paso 3 – Para una pulsación larga encender el primer led (encendido del sistema) y una vez encendido cada pulsación corta pasa de un led a otro en la secuencia 1-2-3-4-1-2-3-4-… Si se hace una pulsación corta apagar los leds.

Es un sistema que con una pulsación larga apaga o enciende el sistema y con una una corta cambia el led si anteriormente he encendido el sistema.

Sacar también los datos de tiempos por la pantalla LCD.

Solución: https://codeshare.io/2jbRYP

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio13-Pulse

Ejercicio propuesto: hacer un juego para dos jugadores con los dos botones en el que gana el que más se acerque en la pulsación a un valor de segundos generado aleatoriamente.

Ejercicio14 – Control Efectos LED

Basándonos en el ejercicio Ejercicio12-RGB_Wemos hacer un sketch que controle los efectos, con una pulsación corta cambia el color del led girando y con una larga apaga o enciende el sistema.

Usar la función millis para calcular el tiempo de la pulsación. De esta forma no se bloquea el programa en la función PulseIn. ESTO ES UN EJEMPLO DE MULTITAREA

Solución: https://codeshare.io/5vQRn7

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio14-Control_RGB_Wemos

Prácticas: Operadores y Estructuras de Control con Arduino

Montaje Arduino UNO:

Montaje Wemos:

Ejercicio10-Alarma

Ejercicio10: hacer un sistema de alarma que haga sonar el buzzer cuando la temperatura suba de 24 grados. Hacer una constante con #define llamada UMBRAL donde declaramos el umbral.

Encender los leds cuando se supere la temperatura, de forma que con 24 grados se enciendo el primero, con 25 grados el segundo y así hasta encender los 4 leds.

Adicionalmente mandar por el puerto serie y por la pantalla LCD la temperatura en la primera línea y un mensaje de “ALARMA” o “NORMAL” en la segunda línea, cada vez que entre o salga del estado alarma al superar el umbral. Necesitaremos una variable global llamada alarma_temperatura que deberá actualizarse.

Diagrama de flujo (en este caso es el pin 11 donde leo la temperatura con el sensor DHT11, en lugar de A0):

Solución: https://codeshare.io/29wqDB

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio10-Alarma

Ejercicio11-while

Ejercicio11: Usando un bucle while y las instrucciones continue y break, imprimir por el puerto serie y pantalla LCD los número impares del 0 al 100 usando un delay de 100 ms. Usa una variable contador dentro del bucle while. Al llegar a 100 encender hacer parpadear 5 veces consecutivas los 4 leds.

Solución: https://codeshare.io/ay9VYz

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio11-While

Ejercicio12-RGB_Wemos

Basándonos en el ejemplo de la librería de los leds RGB del Shield Wemos RGB https://github.com/wemos/D1_mini_Examples/blob/master/examples/04.Shields/RGB_LED_Shield/simple/simple.ino, hacer el efecto un led girando en sentido horario que cada 5 vueltas aumente la velocidad, empezando desde 200 ms mostrando un led hasta 20ms continuamente. La velocidad aumenta restando 20 ms en cada ciclo: 200 – 180 – 160 – 140, etc…

Funciones:

  • leds.setPixelColor(i, leds.Color(R, G, B)); — pone el led i al color con la combinación R, G, B
  • leds.show(); — Muestra la configuración hecha con setPixelColor

Solución: https://codeshare.io/ay9VAo

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio12-RGB_Wemos