Archivo de la categoría: Raspberry Pi

Instalación Software Raspberry Pi

Instalar servidor LAMP

El acrónimo LAMP está compuesto por las iniciales de sus cuatro componentes: Linux, Apache, MySQL y PHP. Estos forman la infraestructura en el servidor, que hace posible la creación y el alojamiento de páginas web dinámicas. Los componentes individuales se acumulan unos sobre otros, por lo que esta plataforma también recibe el nombre de LAMP stack (del inglés “apilar”).

Su funcionamiento es muy simple. Linux sirve como sistema operativo base para ejecutar el servidor web Apache. Este último no puede interpretar contenidos dinámicos, pero es aquí donde PHP entra a ejercer sus funciones de programación del lado del servidor. El proceso funciona entonces de la siguiente manera: Apache le envía un código fuente al intérprete PHP, incluyendo la información correspondiente sobre las acciones del visitante de la web, y permite el acceso a la base de datos MySQL. El resultado es devuelto a Apache y este se muestra finalmente en el navegador web del visitante.

El lenguaje de programación PHP es uno de los más extendidos para el desarrollo de páginas web. La ventaja de utilizar PHP para el desarrollo de páginas web es que nos permite crear páginas web dinámicas, es decir, que se generan cuando un usuario visita la página.

MySQL es un sistema de gestión de bases de datos relacional desarrollado bajo licencia dual: Licencia pública general/Licencia comercial por Oracle Corporation y está considerada como la base datos de código abierto más popular del mundo, y una de las más populares en general junto a Oracle y Microsoft SQL Server, sobre todo para entornos de desarrollo web.

La alternativa libre es mariaDB: https://mariadb.org/ 

Este proyecto monta un pequeño servidor web Apache con lo que podrías por ejemplo alojar tu propia página web entre otras cosas. Además, si despliegas alrededor de tu casa, por ejemplo, varios sensores y actuadores (temperatura, humedad, luces, etc…) comandados por Arduino, podrías utilizar la Raspberry Pi 3como centro de envío y recepción de datos a través de su red. Y por supuesto utilizar la página Web para mostrar y controlar los datos a través de Internet.

Instrucciones para su instalación:

#Update system

  • sudo apt-get update
  • sudo apt-get upgrade

#Install Apache2

  • sudo apt-get install apache2

Comprobar que accedemos entrando a la IP de la Raspberry Pi desde un navegador

La página web por defecto está en /var/www/html

Crear un fichero prueba.html en el directorio /var/www/html que contenga el texto: “HOLA MUNDO”

Para comprobar que funciona entrar desde un navegador a la dirección: http://ip_raspberry/prueba.html y ver que aparece el texto “HOLA MUNDO”

También podemos comprobar que funciona conectando un Arduino a la red de la Raspberry Pi y cargar este sketch: https://github.com/jecrespo/Curso-IoT-Open-Source/blob/master/Conecta_Raspberry/Conecta_Raspberry.ino 

#Install PHP

  • sudo apt-get install php libapache2-mod-php

La versión que se instala es la 7.

Para comprobar el funcionamiento crear un fichero llamado info.php y en su interior el código: <?php phpinfo(); ?>

Luego en un navegador ir a http://IP-raspberry/info.php

#Install MariaDB

  • sudo apt-get install mariadb-server mariadb-client php-mysql
  • sudo mysql_secure_installation
  • sudo service apache2 restart

Durante el proceso de instalación se pedirá el password de root de MySQL, poner el mismo que tiene el usuario pi de la Raspberry Pi y poner a Yes todas las opciones de mysql_secure_installation 

Estos comando instalan una BBDD MariaDB

Para comprobar que todo funciona ejecutar sudo mysql -u root -p y poner la contraseña, saldrá:

Welcome to the MariaDB monitor.  Commands end with ; or \g.
Your MariaDB connection id is 61
Server version: 10.1.23-MariaDB-9+deb9u1 Raspbian 9.0
Copyright (c) 2000, 2017, Oracle, MariaDB Corporation Ab and others.
Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the current input statement.

#Install MySQL

En caso de quere instalar MySQL en lugar de MariaDB usar estos comandos:

Más información:

#Install PhpMyAdmin

  • sudo apt-get install phpmyadmin

Durante el proceso pide la contraseña del usuario phpmyadmin de MySQL y el servidor a instalar el apache y poner yes en dbconfig-common

En caso que no hayamos configurado el servidor web correctamente o queramos hacer una configuración de phpmyadmin después de la instalación, usar el comando: sudo dpkg-reconfigure -plow phpmyadmin

phpMyAdmin es una herramienta escrita en PHP con la intención de manejar la administración de MySQL a través de páginas web, utilizando Internet. Actualmente puede crear y eliminar Bases de Datos, crear, eliminar y alterar tablas, borrar, editar y añadir campos, ejecutar cualquier sentencia SQL, administrar claves en campos, administrar privilegios, exportar datos en varios formatos y está disponible en 72 idiomas. Se encuentra disponible bajo la licencia GPL Versión 2.

Para probar que funciona ver en un navegador: http://IP-raspberry/phpmyadmin con el usuario phpmyadmin y la contraseña usada.

El usuario phpmyadmin no tiene privilegios. Para crear un usuario “pi” con privilegios ejecutar:

  • sudo mysql -u root -p
  • CREATE USER ‘pi’@’localhost’ IDENTIFIED BY ‘tu_contrasena‘;
  • CREATE USER ‘pi’@’%’ IDENTIFIED BY ‘tu_contrasena‘;
  • GRANT ALL PRIVILEGES ON * . * TO ‘pi’@’localhost’; (Para acceso local)
  • GRANT ALL PRIVILEGES ON *.* TO ‘pi’@’%’;  (Para acceso remoto)
  • GRANT GRANT OPTION ON *.* TO ‘pi’@’localhost’; (Privilegios para dar permisos a otros usuarios)
  • FLUSH PRIVILEGES;

Para conectarnos desde otro servidor: mysql -h ip_raspberry -u root -p

#Install servidor ftp (VSFTPD)

  • sudo apt-get install vsftpd

Una vez instalado, configurar con: sudo nano /etc/vsftpd.conf 

Comentar estas dos opciones:

#local_enable=YES
#ssl_enable=NO

Y añadir al final del fichero:

# CUSTOM
ssl_enable=YES
local_enable=YES
chroot_local_user=YES
local_root=/var/www
user_sub_token=pi
write_enable=YES
local_umask=002
allow_writeable_chroot=YES
ftpd_banner=Welcome to my Raspberry Pi FTP service.

También necesitamos añadir el usuario pi al grupo www-data, dar la propiedad de la carpeta /var/www al usuario y al grupo www-data, cambiar la carpeta de inicio del usuario pi a la misma, y aflojar algunos permisos en la carpeta /var/www:

  • sudo usermod -a -G www-data pi
  • sudo usermod -m -d /var/www pi
  • sudo chown -R www-data:www-data /var/www
  • sudo chmod -R 775 /var/www

Y reiniciar el servicio: sudo service vsftpd restart 

Para comprobar que funciona usar un cliente ftp con https://filezilla-project.org/ y hacer una conexión con la siguiente configuración:

  • Host – 192.xxx.x.xxx (IP address)
  • Port – 21
  • Protocol – FTP (File Transfer Protocol)
  • Encryption – Use explicit FTP over TLS if available
  • Logon Type – Normal (username & password)
  • Username – pi
  • Password – [enter password]

Más información: 

Y si quisieramos instalar un wordpress: https://www.raspberrypi.org/learning/lamp-web-server-with-wordpress/

Con esto ya tenemos listo un servidor para recibir conexiones de arduino y guardar datos y mostrarlos

Recordar cada vez que se haga una modificación grande en Raspberry Pi hacer una copia de seguridad de la tarjeta SD con Win32DiskImager.

Descarga https://sourceforge.net/projects/win32diskimager/

Escribir el nombre de la imagen en la ruta donde los guardemos.

Y luego pulsar read. Una vez hecho esto, esperar a que el proceso finalice.

Probar LAMP con Arduino

Para probar el servidor LAMP que acabamos de instalar en nuestra Raspberry Pi vamos a usar Arduino y mandar datos de luminosidad de la sala usando un LDR.

Una fotorresistencia o LDR (por sus siglas en inglés “light-dependent resistor”) es un componente electrónico cuya resistencia varía en función de la luz.

Se trata de un sensor que actúa como una resistencia variable en función de la luz que capta. A mayor intensidad de luz, menor resistencia: el sensor ofrece una resistencia de 1M ohm en la oscuridad, alrededor de 10k ohm en exposición de luz ambiente, hasta menos de 1k ohm expuesto a la luz del sol. Aunque estos valores pueden depender del modelo de LDR.

El LDR actúa como una resistencia variable. Para conocer la cantidad de luz que el sensor capta en cierto ambiente, necesitamos medir la tensión de salida del mismo. Para ello utilizaremos un divisor de tensión, colocando el punto de lectura para Vout entre ambas resistencias. De esta forma:

Dónde Vout es el voltaje leído por el PIN analógico del Arduino y será convertido a un valor digital, Vin es el voltaje de entrada (5v), R2 será el valor de la resistencia fija colocada (10k ohm generalmente) y R1 es el valor resistivo del sensor LDR. A medida que el valor del sensor LDR varía, obtendremos una fracción mayor o menor del voltaje de entrada Vin.

Instalación:

Más información https://www.luisllamas.es/medir-nivel-luz-con-arduino-y-fotoresistencia-ldr/ 

Crear una base de datos llamada “DatosArduino” con una tabla llamada “luminosidad” que tenga 4 campos: “id” auto incremental y sea el campo clave, “fecha” de  tipo timestamp y que se actualice al actualizar, un campo “arduino” de tipo entero y un campo “IntensidadLuminosa” que sea de tipo entero.

O con la query:

CREATE TABLE `luminosidad` (
  `id` int(11) NOT NULL,
  `fecha` timestamp NOT NULL DEFAULT current_timestamp() ON UPDATE current_timestamp(),
  `arduino` int(11) NOT NULL,
  `IntensidadLuminosa` int(11) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
ALTER TABLE `luminosidad`
  ADD PRIMARY KEY (`id`);
ALTER TABLE `luminosidad`
  MODIFY `id` int(11) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=4;

Para insertar un dato:

INSERT INTO `luminosidad` (`arduino`, `IntensidadLuminosa`) VALUES (’22’, ’22’);

Subir por FTP seguro los ficheros Graba_GET.php y Graba_POST.php a Raspberry Pi al directorio /var/www/html o crearlos con el comando nano:

Se puede probar que funciona ejecutando desde el navegador: http://127.0.0.1/Graba_GET.php?arduino=2&IntensidadLuminosa=89 

Ejecutar en Arduino estos sketches para GET o POST para mandar cada 5 segundos el dato de luminosidad:

Ver en la web de phpmyadmin los datos que se están subiendo y descargar en formato csv los datos guardados en unos minutos.

NOTA: Para ver los errores de PHP activar en /etc/php/7.0/apache2/php.ini la línea:

  • Development Value: E_ALL

Instalar Webmin

Webmin es una herramienta de configuración de sistemas accesible vía web para sistemas Unix, como GNU/Linux y OpenSolaris. Con él se pueden configurar aspectos internos de muchos sistemas operativos, como usuarios, cuotas de espacio, servicios, archivos de configuración, apagado del equipo, etcétera, así como modificar y controlar muchas aplicaciones libres, como el servidor web Apache, PHP, MySQL, DNS, Samba, DHCP, entre otros.

Web: http://www.webmin.com/

Instalación:

Para comprobar que se ha instalado acceder desde un navegador a https://ip_address:10000 con usuario pi y la contraseña

Más información:

Manejar GPIO Raspberry Pi

Blink Led

Antes de empezar recordar comprobar la posición de los pines porque en caso de error podemos dañar la Raspberry Pi ya que los GPIO no tienen ninguna protección.

  • Cuando conectes cables a los GPIO procura no equivocarte y fíjate bien.
  • Usa cables con recubrimiento del tipo Dupont Macho-hembra por ejemplo, y no acerques cables sin proteger a tus GPIO (Y mucho menos un destornillador) porque puedes hacer un corto con facilidad.

  • Una vez que conectes un cable hembra protegido, vuelve a mirar y asegúrate de que lo has conectado al pin que querías y no al de al lado.
  • Especial cuidado con los pines que uses para sacar 3V o 5V de tu Raspi. No dejes el otro extremo al aire: Asegúrate de conectarlo a algún sitio.
  • NO CONECTES NADA DE 5V si no estás seguro. Tu Raspberry funciona a 3.3V y meterle 5V en un pin puede suponer quemar el procesador central. 

Instalar las librerías para el uso de los pines GPIO desde Python, asegurandonos de tener actualizado Raspbian:

  • sudo apt-get update
  • sudo apt-get upgrade
  • sudo apt-get install python-dev
  • sudo apt-get install pyton-rpi.gpio

Tened en cuenta que en esta ocasión vamos a alimentar el LED con 3.3V (Que es lo que proporciona un pin de la Raspi) y que la intensidad que obtendremos será: 3.3 / 1K Ω = 3 mA, que no es mucho para iluminar un LED pero suficiente.

Esquema de GPIO:

Conectamos GND al pin 6 de la Raspberry y vamos a usar el pin 12 (GPIO 18) como control del encendido mediante una resistencia intermedia. El esquema de conexión es:

Abrir el IDLE de Python 3 para empezar nuestro programa:

Y copiar código:

import RPi.GPIO as gpio

import time

gpio.setmode(gpio.BOARD)
gpio.setup(12, gpio.OUT)

for  x in range ( 0, 10):
    gpio.output(12, True)
    time.sleep(0.5)
    gpio.output(12, False)
    time.sleep(0.5)

print “Ejecución finalizada”

Guardar el fichero con el nombre blink.py en /home/pi y ejecutarlo pulsando F5

Más información:

Instalación Raspbian

Software quickstart: https://www.raspberrypi.org/learning/software-guide/quickstart/ 

Guías de iniciación:

Formatear la tarjeta SD de la forma correcta.

Uno de los errores más frecuentes de los usuarios de tarjetas de memoria SD está en creer que este tipo de memorias funcionan igual que una memoria USB o un disco duro y se pueden formatear con las utilidades del sistema operativo. A diferencia de otros dispositivos de almacenamiento, las tarjetas SD incluyen una zona especial denominada “Protected Area”, empleada para temas de seguridad, que requiere un tratamiento especial. Adicionalmente – y dependiendo de la configuración y el tipo de tarjeta – es necesario un formateo ajustado al tipo de tarjeta.

Descargar e instalar la utilidad “SD Card Formatter” provista por la SD Association, los mismos que definen los estándares de este medio de almacenamiento. Después de instalada, se debe proceder a formatear la tarjeta SD antes de utilizarla. De esta forma se garantiza que se usará todo el espacio disponible de la tarjeta y se optimizará su desempeño y almacenamiento de acuerdo con las especificaciones del fabricante.

Descarga https://www.sdcard.org/downloads/formatter_4/eula_windows/index.html 

Instalar Imagen Raspbian

Descargar imagen Raspbian zip: https://www.raspberrypi.org/downloads/

Descargar Raspbian Buster with desktop desde: https://downloads.raspberrypi.org/raspbian_latest 

La versión por defecto de Raspbian es ahora una instalación mínima – le da el escritorio, el navegador Chromium, el reproductor multimedia VLC, Python, y algunos programas accesorios. Junto a esto se encuentra la imagen “Raspbian Full”, que también incluye todos los programas recomendados: LibreOffice, Scratch, SonicPi, Thonny, Mathematica y varios otros.

El programa de software recomendado se puede utilizar para instalar o desinstalar cualquiera de los programas adicionales que se encuentran en la imagen completa; si descarga la imagen mínima y comprueba todas las opciones en el software recomendado, terminará con la imagen completa, y viceversa.

Buster la nueva versión de Raspbian: https://www.raspberrypi.org/blog/buster-the-new-version-of-raspbian/

Guía de instalación https://www.raspberrypi.org/documentation/installation/installing-images/README.md 

Para copiar la imagen a una SD usar:

Tutoriales de instalación de Raspbian:

balenaEtcher es normalmente la opción más fácil para la mayoría de los usuarios de escribir imágenes en tarjetas SD, por lo que es un buen punto de partida. Si busca una alternativa en Windows, puede usar Win32DiskImager.

Pasos:

  • Descargar SO: Raspbian
  • Formatear microSD: SD Card Formatter 4.0
  • Flashear: Etcher
  • Acceder a la SD desde un PC: Partición “/boot” es accesible desde Windows, partición extendida.
  • Preconfiguración (recomendado para modo headless): SSH

Etcher

Etcher es una herramienta gráfica de escritura de tarjetas SD que funciona en Mac OS, Linux y Windows, y es la opción más fácil para la mayoría de los usuarios. Etcher también soporta la escritura de imágenes directamente desde el archivo zip, sin necesidad de descomprimirlas.

Descargar Etcher: https://www.balena.io/etcher/ y yscribir tu imagen con Etcher.

Win32DiskImager

Con Win32DiskImager no solo se puede copiar una imagen sino guardar una imagen de una tarjeta SD, pero el uso de Etcher es más sencillo.

Descarga https://sourceforge.net/projects/win32diskimager/

Post Instalación

Una vez instalado raspbian, conectar un monitor, teclado y ratón a Raspberry Pi para seguir con su configuración.

En caso de no tener un monitor, se puede hacer una instalación headless:

Una vez entramos en Raspberry Pi, seguimos los pasos que nos indica para cambiar contraseña, cambiar el nombre (hostname), configurar y actualizar Raspberry Pi.

Luego es posible hacer más configuraciones desde “Configuración de  Raspberry Pi” o desde comando “sudo raspi-config”:

Conexión a la Red

La forma general de conectar a Internet la Raspberry Pi es mediante 

  • Conexión a Ethernet por DHCP
  • Conectar a Wifi por DHCP

Por este motivo no es necesario configurar nada si conectamos a un router con DHCP configurado para ethernet y en WiFi solo deberemos configurar la red wifi.

DHCP:

La propia Raspberry Pi podría hacer de servidor DHCP: https://www.raspberrypi.org/learning/networking-lessons/lesson-3/plan/ 

La Raspberry Pi 3 es la primera de la familia en incluir WIFI estándar de serie, lo que es un gran avance de salida y garantiza que se normalice las conexiones, a diferencia de las versiones previas en las que había que comprar un módulo WiFi y configurar la WIFI en función del modelo de adaptador que usásemos.

En el caso actual, la configuración de la WIFI se reduce a listar las redes disponibles y elegir la nuestra, para después proporcionar la contraseña de acceso. 

Aquí tienes iconos para la configuración de varios elementos, como el volumen de audio la WIFI y hasta el Bluetooth, que recuerda viene de serie en la nueva Raspi3. Para configurar la WIFI pincha y selecciona el icono y selecciona la WiFi a conectarse.

Una vez configurado comprobar que se puede navegar.

Aunque hayas conectado correctamente a Internet hay mil razones por las que necesitas conocer más información de tus conexiones IP, especialmente saber la IP para que al actuar como servidor saber a qué IP conectarnos.

Con el comando “ifconfig” podemos saber qué interfaces están conectados y que DNS usan o que Gateway o router estas usando como salida.

Para obtener los datos de ethernet teclea ifconfig eth0 y para wifi teclea ifconfig wlan0

Con el comando route -ne se pueden ver las rutas configuradas

Más información: https://www.prometec.net/conectar-a-internet/ 

Para obtener más información de las redes ver los directorios:

  • /sys/class/net/eth0
  • /sys/class/net/wlan0

Por ejemplo en el fichero address está la dirección MAC del controlador de red

En algunas ocasiones nos puede interesar asignar una IP fija, para ello seguir el tutorial: https://www.luisllamas.es/raspberry-pi-ip-estatica/ 

Los fichero de configuración de IP son:

  •  /etc/dhcpcd.conf
  • /etc/network/interfaces

Más información: https://raspberrypi.stackexchange.com/questions/39785/dhcpcd-vs-etc-network-interfaces 

También es conveniente cambiar el hostname, seguir este tutorial: https://www.howtogeek.com/167195/how-to-change-your-raspberry-pi-or-other-linux-devices-hostname/

Acceso Remoto

Una vez instalado vamos a asegurarnos el acceso remoto para no tener que tener conectado a un monitor y un teclado y ratón y podamos manejarlo.

Acceso Remoto: https://www.raspberrypi.org/documentation/remote-access/

SSH

La mejor forma de acceder a Raspberry Pi remotamente en modo comando en línea estando en la misma red es usando SSH. 

SSH sigue un modelo cliente-servidor. El cliente inicia una petición al servidor, que autentifica la comunicación e inicia el entorno Shell. Múltiples clientes pueden conectarse a un mismo servidor. Por defecto SSH emplea el puerto TCP 22 aunque puede cambiarse fácilmente. 

SSH dispone de más usos muy interesantes. por ejemplo, podemos copiar archivos de forma segura entre dos dispositivos, o tunelizar cualquier conexión de otra aplicación a través de un canal seguro SSH.

Para activar el servidor SSH en Raspberry Pi comprobar que estás activado en menu – Preferencias- Configuración de Raspberry Pi – Interfaces

Esta conexión sólo funciona en red local. Para poder acceder desde fuera, a través de Internet, hay que configurar un mapeo de puertos en el router. El proceso completo depende del router.

Para conectarnos desde Windows a SSH, deberemos emplear un cliente SSH para conectarnos con Raspberry Pi. El cliente más utilizado en Windows es Putty, que es Open Source y está disponible en https://www.putty.org/

Descargamos y ejecutamos Putty y nos aparece una ventana donde podemos introducir la dirección IP (o el nombre) de la Raspberry Pi. Al conectarnos se nos preguntará el nombre del usuario y la contraseña.

Más información:

VNC

La mejor forma de acceder a Raspberry Pi remotamente en modo escritorio estando en la misma red es usando VNC.

VNC es un programa de software libre basado en una estructura cliente-servidor que permite observar las acciones del ordenador servidor remotamente a través de un ordenador cliente. VNC no impone restricciones en el sistema operativo del ordenador servidor con respecto al del cliente: es posible compartir la pantalla de una máquina con cualquier sistema operativo que admita VNC conectándose desde otro ordenador o dispositivo que disponga de un cliente VNC portado.

Seguir este tutorial: https://www.raspberrypi.org/documentation/remote-access/vnc/README.md

La conexión de VNC de RealVNC se incluye con Raspbian. Consiste en el servidor de VNC, que permite controlar Raspberry Pi remotamente, y el VNC viewer, que permite que controlar ordenadores remotamente de su Raspberry Pi.

El servidor VNC debe habilitarse para poder conectarse remotamente, para ello ir a menu – Preferencias- Configuración de Raspberry Pi – Interfaces y asegurarse que VNC está activado.

Una vez activado establecer la conexión desde el ordenador instalando el VNC viewer: https://www.realvnc.com/en/connect/download/viewer/ y conectarse a la IP de nuestra Raspberry:

Con VNC también se puede establecer una conexión en la nube.

Más información:

Team Viewer

En el caso que queramos conectarnos a nuestra Raspberry Pi estando en cualquier parte del mundo, una buena opción es TeamViewer.

TeamViewer es un software informático privado de fácil acceso, que permite conectarse remotamente a otro equipo. Entre sus funciones están: compartir y controlar escritorios, reuniones en línea, videoconferencias y transferencia de archivos entre ordenadores.Team Viewer es gratuito para uso personal.

Web: https://www.teamviewer.com/es/ 

La instalación es muy simple solo hay que descargarse TeamViewer Host para raspberry Pi desde https://www.teamviewer.com/es/descarga/linux/ y acerse una cuenta en la web de TeamViewer https://www.teamviewer.com/es/ 

Enlace de descarga: https://download.teamviewer.com/download/linux/teamviewer-host_armhf.deb 

Instalar el fichero teamviewer-host_xxx_armhf.deb, simplemente haciendo doble click o con el comando “sudo dpkg -i filename.deb”

Si hay dependencias solucionarlo con  “sudo apt-get update” y “sudo apt-get -f upgrade”

Una vez instalado ejecutar TeamViewer en Raspberry Pi y poner las credenciales de la cuenta de TeamViewer

Finalmente acceder a https://login.teamviewer.com/LogOn con la cuenta de TeamViewer y ya podemos acceder a nuestra Raspberry Pi. Necesitaremos instalar el cliente de TeamViewer o la app de Chrome:

Solo para controlar la Raspberry Pi remotamente ejecutar el cliente “TeamViewer_Setup.exe” de esta forma:

Más información:

Raspberry Pi en IoT

Qué es Raspberry Pi

Una Raspberry Pi es una placa de desarrollo basada en linux, pero a efectos de todos se trata de un ordenador con linux completo.

Raspberry nació con un propósito: incentivar la enseñanza de informática en el entorno docente. Es un ordenador muy pequeño, del tamaño de una tarjeta, muy económico y también muy conocido para crear prototipos. Con esta plataforma de desarrollo se gestiona una gran cantidad de datos y es especialmente atractiva para la creación de aplicaciones móviles (Apps) donde el peso de la interfaz gráfica es muy importante. Está muy indicada, además, para proyectos multimedia basados en Linux.

En 2009 se creó la Fundación Raspberry Pi en Reino Unido y dos años más tarde comenzaron a fabricarse las primeras placas prototipo. El éxito fue tan grande que los fundadores trasladaron su producción a Gales, de donde salen miles de dispositivos al día. Existen varios modelos de placas y su popularidad ha generado que salgan al mercado diversidad de accesorios que suman funcionalidades a la placa base, al igual que Arduino.

La placa Raspberry se utiliza, como Arduino, en entornos de robótica o domótica, pero también como servidor de archivos. Es otra opción dentro del IoT y es muy interesante cuando el objetivo es procesar y tratar muchos datos. Cualquiera de ellos, Arduino o Raspberry, ofrece fórmulas eficaces para multitud de proyectos, pero todavía es difícil establecer su límite al estar en constante evolución.

Pero además, la Raspberry Pi 3 viene cargada con tecnología adicional para que podamos conectar nuestros proyectos al mundo de Internet de las Cosas.

  • 11n Wireless LAN
  • Bluetooth 4.0
  • Bluetooth Low Energy (BLE)

Estas nuevas características son precisamente las que nos van a permitir cubrir nuestras necesidades de conexión de forma inalámbrica a nivel de red local LAN y acceso a Internet, gracias al WiFi, y a nivel de comunicación con sensores y actuadores, gracias al Bluetooth. La Raspberry Pi 3 nos pone en bandeja todo lo necesario para comenzar a construir proyectos para Internet de las Cosas y aprender multitud de cosas, como programación, comunicaciones, electrónica, etc.

La Raspberry Pi 4 Model B es una actualización mayor de lo que podemos ver a primera vista, el cambio de procesador a un ARM Cortex-172 con cuatro núcleos a 1,5 GHz también implicaba pasar de los 40 nm a los 28 nm. En consecuencia, todos los componentes y la potencia del dispositivo ha cambiado.

Raspberry Pi 4 viene con Bluetooth 5.0 y Wi-Fi 802.11ac para las conexiones inalámbricas. También se ha cambiado el conector microUSB de alimentación por un USB-C que suma 500 mA extra de energía para alcanzar un total de 1.2 A. Algunos detalles extra a tener en cuenta son por ejemplo el soporte para doble monitor con resolución 4K.

Se han puesto a la venta un total de tres modelos diferentes, que varían según la capacidad de la memoria RAM que trae. Son los siguientes modelos:

  • Raspberry Pi 4 con 1 GB de RAM: 35 dólares.
  • Raspberry Pi 4 con 2 GB de RAM: 45 dólares.
  • Raspberry Pi 4 con 4 GB de RAM: 55 dólares.

Web: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

Más información: 

Buena introducción a Raspberry Pi:

Más información:

Marca powered by raspberry pi: https://www.hwlibre.com/powered-by-raspberry-pi-el-nuevo-sello-de-calidad-de-raspberry-pi/ 

Webs importantes de Raspberry Pi:

Arduino vs Raspberry Pi

Ver: https://aprendiendoarduino.wordpress.com/2017/06/19/arduino-vs-raspberry-pi-3/ 

Modelos Raspberry Pi

Raspberry Pi tiene diverso hardware. Productos Raspberry Pi: https://www.raspberrypi.org/products/ 

Hardware: https://www.raspberrypi.org/documentation/hardware/

Hardware Guide: https://www.raspberrypi.org/learning/hardware-guide/

Más información:

Modelos: 

  • Raspberry Pi (1) Model A
  • Raspberry Pi (1) Model A+
  • Raspberry Pi (1) Model B
  • Raspberry Pi (1) Model B+
  • Raspberry Pi 2 Model B
  • Raspberry Pi 3 Model B
  • Raspberry Pi 3 Model B+
  • Raspberry Pi 3 Model A+
  • Raspberry Pi 4 Model B
  • Raspberry Pi Zero (Hay dos versiones 1.2 y 1.3)
  • Raspberry Pi Zero W
  • Raspberry Pi Compute Module
  • Raspberry Pi Compute Module 3
  • Raspberry Pi Compute Module 3+
  • Raspberry Pi Compute Module Lite

Nueva Raspberry Pi 3 model A+: 

Nueva Raspberry Pi 4 model B: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

Tablas comparativas:

GPIO

Del mismo modo que Arduino disponía de una serie de pines que podíamos conectar al mundo exterior para leer o escribir, Raspberry dispone de otra serie de pines homólogos que en la jerga habitual de la RPI se llaman GPIO (General Purpose Input Output).

GPIO: https://www.raspberrypi.org/documentation/hardware/raspberrypi/gpio/README.md

La cantidad de pines disponibles en el GPIO ha variado de unas versiones a otras, manteniendo la compatibilidad con las versiones anteriores para evitar problemas, y a grandes rasgos ha habido dos versiones de GPIO. La gran variación fue de la Raspi 1 a la Raspi 2 que aumentó el número de pines disponibles y que básicamente se pueden ver aquí:

A esta forma de numerar se le suele conocer como modo GPIO, Pero surgió otra forma de numerar no de acuerdo a la posición de los pines en la salida, sino a la posición de los pines correspondientes en el chip Broadcom que es la CPU de la Raspberry, y a esta segunda manera se la llama modo BCM.

Nos encontramos con dos formas distintas de referirse a los pines, GPIO según los números del conector externo o BCM según los pines del chip que revuelven las posiciones. No tiene por qué ser mejor una que otra pero es importante asegurarse de cuál de las dos se está usando.

Disposición de los pines en la placa:

Pinout: https://pinout.xyz/ 

Más información:

IMPORTANTE:Todos los IO ports son de 3.3V, así que se debe tener cuidado.

Especificaciones eléctricas del GPIO: http://www.mosaic-industries.com/embedded-systems/microcontroller-projects/raspberry-pi/gpio-pin-electrical-specifications

Iconos de alerta de firmware: https://www.raspberrypi.org/documentation/configuration/warning-icons.md 

Para manejar los pines de GPIO la mejor manera de usarlos es en Python mediante el uso de librerías. Veremos más adelante como usarlo en el apartado de programación y manejo.

Thingspeak

ThingSpeak es un plataforma de Internet of Things (IoT) que permite recoger y almacenar datos de sensores en la nube y desarrollar aplicaciones IoT. Thinkspeak también ofrece aplicaciones que permiten analizar y visualizar tus datos en MATLAB y actuar sobre los datos. Los datos de los sensores pueden ser enviados desde Arduino, Raspberry Pi, BeagleBone Black y otro HW.

Web: https://thingspeak.com/

Thingspeak es parte de Mathworks https://en.wikipedia.org/wiki/MathWorks que es la empresa de entre otros Matlab y Simulink.

Uso comercial: https://thingspeak.com/pages/commercial_learn_more

Precios: https://thingspeak.com/prices

Features Thingspeak:

También puede acceder a los recursos de MATLAB y Simulink con una cuenta gratuita de MathWorks.

Apps de Thingspeak, son los servicios de la plataforma IoT: https://thingspeak.com/apps

Librería Thingspeak para Arduino, ESP8266 y ESP32: https://github.com/mathworks/thingspeak-arduino

La estructura de Thingspeak es:

  • Canales (Channels): los datos que recogemos en los dispositivos se guardan en canales.
  • En cada canal se disponen de una serie de campos para guardar datos, así como otra información adicional
  • Los canales pueden ser públicos o privados.
  • Dentro de cada canal podemos añadir visualizaciones o Widgets
  • Los datos del canal se pueden importar o exportar
  • En la pestaña de API keys está la información con las contraseñas (API Keys) para usar con las APIs.

Tutoriales Thingspeak: https://community.thingspeak.com/tutorials/

Tutoriales Arduino:

Tutoriales ESP8266:

Tutoriales Raspberry Pi.

Documentación: https://www.mathworks.com/help/thingspeak/

Getting started con Thingspeak: https://www.mathworks.com/help/thingspeak/getting-started-with-thingspeak.html

Ejemplos: https://www.mathworks.com/help/thingspeak/examples.html

Restful y MQTT APIs: https://www.mathworks.com/help/thingspeak/channels-and-charts-api.html

Alertas: https://www.mathworks.com/help/thingspeak/monitor-channel-inactivity-using-multiple-thingSpeak-apps.html

Más información:

Cliente MQTT Thingspeak

ThingSpeak ahora es compatible con la publicación MQTT, que le permite enviar datos a ThingSpeak desde cualquier dispositivo o servicio compatible con el estándar MQTT.

Puede seguir enviando hasta 3 millones de mensajes al año de forma gratuita. Para determinar cuántos mensajes utiliza, puede iniciar sesión y ver el uso de su cuenta.

Tutoriales para usar MQTT con Arduino:

Ejemplo con Thingspeak

Instalar con el gestor de librerías la librería thinkspeak o manualmente desde https://github.com/mathworks/thingspeak-arduino

Crear un nuevo canal: temperatura casa

Los canales guardan todos los datos que una aplicación Thingspeak recoge. Cada canal incluye 8 campos que pueden almacenar cualquier tipo de dato, además de tres campos para localización del dispositivo y uno para el estado de los datos. Una vez los datos son recogidos en un canal, es posible usarlos con las apps de Thingspeak para analizarlos y visualizarlos.

API: https://es.mathworks.com/help/thingspeak/channels-and-charts.html

Thingspeak apps: https://thingspeak.com/apps

Tutorial: https://es.mathworks.com/help/thingspeak/getting-started-with-thingspeak.html

Analizar datos: https://es.mathworks.com/help/thingspeak/analyze-your-data.html

Actuar con tus datos: https://es.mathworks.com/help/thingspeak/act-on-your-data.html

Código con IP fija y sin librería: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio65-Thingspeak

Código con IP fija y librerías: https://github.com/jecrespo/aprendiendoarduino-iot/tree/master/01-Thingspeak/Temp-y-Hum

Canal público: https://thingspeak.com/channels/242341

Usar MQTT con Thingspeak: http://blogs.mathworks.com/iot/2017/01/20/use-mqtt-to-send-iot-data-to-thingspeak/

Repositorio: https://github.com/jecrespo/aprendiendoarduino-iot/tree/master/01-Thingspeak

Analizar

Ejemplos: https://es.mathworks.com/help/thingspeak/examples.html

Tutorial: https://es.mathworks.com/help/thingspeak/analyze-your-data.html  

Actuar

Con webhooks http, thinghttp: https://thingspeak.com/apps/thinghttp

React: https://thingspeak.com/apps/reacts

React app: https://es.mathworks.com/help/thingspeak/react-app.html

Manual Thinghttp APP: https://es.mathworks.com/help/thingspeak/thinghttp-app.html

Tutorial: http://community.thingspeak.com/tutorials/arduino/cheerlights-with-arduino-and-the-fastled-library/

Restduino: https://github.com/sirleech/RestduinoThingspeak

Time control:

Canal público: https://thingspeak.com/channels/242341

WiFi

El wifi es un mecanismo de conexión de dispositivos electrónicos de forma inalámbrica. Los dispositivos habilitados con wifi como Arduino, pueden conectarse a internet a través de un punto de acceso de red inalámbrica.

Wi-Fi es una marca de la Alianza Wi-Fi, la organización comercial que adopta, prueba y certifica que los equipos cumplen con los estándares 802.11 relacionados a redes inalámbricas de área local.

  • Los estándares IEEE 802.11b, IEEE 802.11g e IEEE 802.11n disfrutan de una aceptación internacional debido a que la banda de 2,4 GHz está disponible casi universalmente, con una velocidad de hasta 11 Mbit/s, 54 Mbit/s y 300 Mbit/s, respectivamente.
  • En la actualidad ya se maneja también el estándar IEEE 802.11ac, conocido como WIFI 5, que opera en la banda de 5 GHz y que disfruta de una operatividad con canales relativamente limpios. La banda de 5 GHz ha sido recientemente habilitada y, además, no existen otras tecnologías (Bluetooth, microondas, ZigBee) que la estén utilizando, por lo tanto existen muy pocas interferencias. Su alcance es algo menor que el de los estándares que trabajan a 2,4 GHz (aproximadamente un 10 %), debido a que la frecuencia es mayor (a mayor frecuencia, menor alcance).

Existen otras tecnologías inalámbricas como Bluetooth que también funcionan a una frecuencia de 2,4 GHz, por lo que puede presentar interferencias con la tecnología wifi. Debido a esto, en la versión 1.2 del estándar Bluetooth actualizó su especificación para que no existieran interferencias con la utilización simultánea de ambas tecnologías, además se necesita tener 40 000 kbit/s.

Existen varias alternativas para garantizar la seguridad de estas redes. Las más comunes son la utilización de protocolos de cifrado de datos para los estándares wifi como el WEP, el WPA, o el WPA2 que se encargan de codificar la información transmitida para proteger su confidencialidad, proporcionados por los propios dispositivos inalámbricos. La mayoría de las formas son las siguientes:

  • WEP, cifra los datos en su red de forma que sólo el destinatario deseado pueda acceder a ellos. Los cifrados de 64 y 128 bits son dos niveles de seguridad WEP. WEP codifica los datos mediante una “clave” de cifrado antes de enviarlo al aire. Este tipo de cifrado no está recomendado debido a las grandes vulnerabilidades que presenta ya que cualquier cracker puede conseguir sacar la clave, incluso aunque esté bien configurado y la clave utilizada sea compleja.
  • WPA: presenta mejoras como generación dinámica de la clave de acceso. Las claves se insertan como dígitos alfanuméricos.
  • WPA2 (estándar 802.11i): que es una mejora relativa a WPA. En principio es el protocolo de seguridad más seguro para Wi-Fi en este momento. Sin embargo requieren hardware y software compatibles, ya que los antiguos no lo son. Utiliza el algoritmo de cifrado AES (Advanced Encryption Standard).
  • IPSEC (túneles IP) en el caso de las VPN y el conjunto de estándares IEEE 802.1X, que permite la autenticación y autorización de usuarios.
  • Filtrado de MAC, de manera que solo se permite acceso a la red a aquellos dispositivos autorizados. Es lo más recomendable si solo se va a usar con los mismos equipos, y si son pocos.
  • Ocultación del punto de acceso: se puede ocultar el punto de acceso (router) de manera que sea invisible a otros usuarios.

Dispositivos de distribución o de red en wifi son:

  • Los puntos de acceso son dispositivos que generan un set de servicio, que podría definirse como una red wifi a la que se pueden conectar otros dispositivos. Los puntos de acceso permiten, en resumen, conectar dispositivos de forma inalámbrica a una red existente. Pueden agregarse más puntos de acceso a una red para generar redes de cobertura más amplia, o conectar antenas más grandes que amplifiquen la señal.
  • Los repetidores inalámbricos son equipos que se utilizan para extender la cobertura de una red inalámbrica, éstos se conectan a una red existente que tiene señal más débil y crean una señal limpia a la que se pueden conectar los equipos dentro de su alcance. Algunos de ellos funcionan también como punto de acceso.
  • Los enrutadores inalámbricos son dispositivos compuestos, especialmente diseñados para redes pequeñas (hogar o pequeña oficina). Estos dispositivos incluyen, un enrutador (encargado de interconectar redes, por ejemplo, nuestra red del hogar con Internet), un punto de acceso (explicado más arriba) y generalmente un conmutador que permite conectar algunos equipos vía cable (Ethernet y USB). Su tarea es tomar la conexión a Internet, y brindar a través de ella acceso a todos los equipos que conectemos, sea por cable o en forma inalámbrica.

Los estándares 802.11b y 802.11g utilizan la banda de 2,4 GHz. En esta banda se definieron 11 canales utilizables por equipos wifi, que pueden configurarse de acuerdo a necesidades particulares. Sin embargo, los 11 canales no son completamente independientes (un canal se superpone y produce interferencias hasta un canal a 4 canales de distancia). El ancho de banda de la señal (22 MHz) es superior a la separación entre canales consecutivos (5 MHz), por eso se hace necesaria una separación de al menos 5 canales con el fin de evitar interferencias entre celdas adyacentes, ya que al utilizar canales con una separación de 5 canales entre ellos (y a la vez cada uno de estos con una separación de 5 MHz de su canal vecino) entonces se logra una separación final de 25 MHz, lo cual es mayor al ancho de banda que utiliza cada canal del estándar 802.11, el cual es de 22 MHz. Tradicionalmente se utilizan los canales 1, 6 y 11, aunque se ha documentado que el uso de los canales 1, 5, 9 y 13 (en dominios europeos) no es perjudicial para el rendimiento de la red.

Esta asignación de canales usualmente se hace sólo en el Punto de acceso, pues los “clientes” automáticamente detectan el canal, salvo en los casos en que se forma una red “Ad-Hoc” o punto a punto cuando no existe punto de acceso.

Canales en 802.11 (wifi) frente a 802.15.4 (zigbee):

Wifi 5G

La tecnología Wi-Fi utiliza dos bandas de frecuencias según el estándar al que nos refiramos:

  • 2,4 GHz: 802.11b, 802.11g y 802.11n
  • 5 GHz: 802.11a, 802.11n y 802.11ac

Banda 2.4 GHz: En España se pueden utilizar los canales 1-13; el canal 14 es el único prohibido, solamente se puede utilizar en Japón. La potencia máxima es siempre 20 dBm.

Banda 5 GHz: En España se permite el uso de los canales 36-64 y 100-140, al igual que en el resto de Europa. La potencia máxima depende del escenario, pero generalmente sería 23 dBm y 30 dBm respectivamente para equipos nuevos con marcado CE a partir de 2015 (ETSI EN 301 893 V1.8.1).

802.11ac:

Wifi en Arduino

Wifi: Hay múltiples formas de conectar Arduino a internet mediante wifi:

Wifi en Raspberry Pi

Raspberry Pi dispone de Wifi integrada en los siguientes modelos:

  • Model 3: 802.11b/g/n single band 2.4 GHz wireless, Bluetooth 4.1 BLE
  • Model 3+: 802.11b/g/n/ac dual band 2.4/5 GHz wireless, Bluetooth 4.2 LS BLE

Configuración WiFi desde Desktop: https://www.raspberrypi.org/documentation/configuration/wireless/desktop.md

Configuración WiFi desde CLI: https://www.raspberrypi.org/documentation/configuration/wireless/wireless-cli.md

En Raspbian, el fichero de configuración de WiFi es: /etc/wpa_supplicant/wpa_supplicant.conf

Configuración headless: https://www.raspberrypi.org/documentation/configuration/wireless/headless.md

Configurar Raspberry Pi como un Access Point: https://www.raspberrypi.org/documentation/configuration/wireless/access-point.md

Configuración WiFi en Raspberry Pi: https://www.luisllamas.es/raspberry-pi-wifi/

Más de configuración wifi en Raspberry Pi: