Archivo de la categoría: Sigfox

Itinerario Formación IoT/Industria 4.0

En un acercamiento a esta disciplina, se busca conocer las tecnologías necesarias para el desarrollo de soluciones IoT/Industria Conectada y valiéndonos para ello de herramientas, tecnologías, protocolos y software libre/open source que hay a nuestra disposición, de forma que cualquier empresa por pequeña que sea pueda hacer un proyecto sencillo de IoT/Industria 4.0 con una inversión mínima, sea cual sea el sector al que pertenezca.

No solo las grandes empresas pueden dar el salto a IoT, la tecnologías libres permiten que sea factible la digitalización de las pymes con una inversión económica mínima y que surja la innovación desde las propias empresas con una formación adecuada a sus trabajadores.

Fundamentos IoT (Nivel 1)20 h
Dispositivos HW IoT (Nivel 2)20 h
Infraestructuras IoT (Nivel 3)20 h
Conectividad IoT (Nivel 3)20 h
Plataformas IoT (Nivel 4)20 h
Desarrollo Soluciones IoT con Herramientas Libres (Nivel 5)20 h

Ver Anexo I con el material necesario para impartir los cursos de este itinerario.

Fundamentos IoT (Nivel 1)

Objetivo

Describir los fundamentos de Internet de las Cosas e identificar los distintos mercados a los que el alumno puede orientar su actividad profesional.

Dado que las comunicaciones, la conexión a Internet y los dispositivos conectados es un aspecto importante actualmente y los conceptos de computación y comunicaciones van unidos de la mano cuando hablamos de las TIC (Tecnologías de la Información y de la Comunicación), vamos a tratar también en este curso las comunicaciones y la programación de los dispositivos conectados.

Toda la documentación del curso y el código usado es libre y accesible desde https://www.aprendiendoarduino.com/.

Al finalizar el curso el alumno será capaz de:

  • Conocer qué es IoT
  • Reconocer las tecnologías y arquitecturas de IoT
  • Capas en IoT
  • Saber los retos de IoT
  • Importancia de la seguridad den IoT
  • Empresas en IoT
  • Conocer los mercados verticales de IoT
  • Saber los servicios que ofrece IoT

Requisitos Alumnos

No son necesarios requisitos previos de los alumnos para asistir a este curso

Contenido del Curso

  • Qué es el IoT. Visión Holística
  • Ecosistema IoT
  • Retos de IoT
  • Industria 4.0. IIoT
  • Empresas en IoT
  • Mercados Verticales IoT
  • Campos Profesionales IoT
  • Aplicaciones IoT

Dispositivos HW IoT (Nivel 2)

Objetivo

Visión general del HW en el ecosistema IoT y puesta en práctica. Identificar la solución Hardware y Firmware más correcta para un proyecto IoT.

Analizar el hardware y el firmware utilizado dentro el ecosistema IoT y programar algunas las plataformas de prototipado más populares del mercado

Toda la documentación del curso y el código usado es libre y accesible desde https://www.aprendiendoarduino.com/.

Al finalizar el curso el alumno será capaz de:

  • Conocer las plataformas HW IoT 
  • Conocer el firmware usado en las plataformas HW
  • Identificar la solución Hardware y Firmware más correcta para un proyecto IoT
  • Utilizar plataformas de prototipado IoT

Requisitos Alumnos

Haber cursado el módulo de Fundamentos IoT o tener experiencia en HW y Firmware IoT.

Contenido del Curso

  • Dispositivos IoT
  • HW IoT Industrial
  • Firmware: SW de los dispositivos
  • Plataforma de Prototipado
  • Prácticas Firmware
  • HW IoT Comercial

Infraestructuras de Comunicaciones IoT (Nivel 3)

Objetivo

Visión detallada de las infraestructuras y conectividad en IoT con ejemplos prácticos en algunas tecnologías. El alumno será capaz de analizar las necesidades de una solución IoT, ofrecer la mejor solución e implementarla. 

Utilizar las Infraestructuras de comunicación que se usan hoy en día para IoT

Toda la documentación del curso y el código usado es libre y accesible desde https://www.aprendiendoarduino.com/.

Al finalizar el curso el alumno será capaz de:

  • Conocer las diferentes infraestructuras de comunicaciones IoT disponibles en el mercado
  • Comparar las tecnologías inalámbricas y saber elegir la más adecuada dependiendo del proyecto.
  • Ofrecer e implantar soluciones IoT a nivel de conectividad e infraestructuras IoT a partir del análisis de necesidades del proyecto
  • Utilizar algunas de las comunicaciones con placas de prototipado como Arduino y ESP8266

Requisitos Alumnos

Haber cursado el módulo de Fundamentos IoT o tener experiencia en infraestructuras y conectividad IoT.

Contenido del Curso

  • Conectividad IoT
  • Redes Inalámbricas IoT
  • Infraestructura de Comunicación IoT
  • Prácticas de Comunicaciones IoT

Conectividad IoT (Nivel 3)

Objetivo

Visión detallada de las infraestructuras y conectividad en IoT con ejemplos prácticos en algunas tecnologías. El alumno será capaz de analizar las necesidades de una solución IoT, ofrecer la mejor solución e implementarla. 

Analizar los protocolos más populares para dotar de conectividad a los dispositivos IoT y configurar el software

Toda la documentación del curso y el código usado es libre y accesible desde https://www.aprendiendoarduino.com/.

Al finalizar el curso el alumno será capaz de:

  • Conocer los protocolos más populares usados en IoT
  • Profundizar en el protocolo HTTP y el uso de API REST
  • Profundizar en el protocolo MQTT y su uso en aplicaciones IoT
  • Instalar, configurar y usar un broker MQTT
  • Ofrecer e implantar soluciones IoT a nivel de conectividad e infraestructuras IoT a partir del análisis de necesidades del proyecto

Requisitos Alumnos

Haber cursado el módulo de Fundamentos IoT o tener experiencia en infraestructuras y conectividad IoT.

Contenido del Curso

  • Protocolos IoT
  • Protocolo HTTP
  • Uso de API REST
  • Protocolo MQTT
  • Práctica MQTT

Plataformas IoT (Nivel 4)

Objetivo

Visión general de las plataformas IoT y trabajo detallado en algunas de ellas. Proponer, instalar y configurar la plataforma más adecuada para el desarrollo de soluciones IoT.

Analizar las  las plataformas existentes en IoT e instalar y configurar alguna de las más utilizadas.

Toda la documentación del curso y el código usado es libre y accesible desde https://www.aprendiendoarduino.com/.

Al finalizar el curso el alumno será capaz de:

  • Conocer las plataformas IoT Generalistas y especializadas más usadas
  • Conocer plataformas open source, instalar y configurar en un servidor
  • Encontrar la plataforma adecuada para una solución IoT, instalación y configuración
  • Programar servicios usando Node-Red
  • Uso de Bases de Datos para almacenamiento de datos
  • Configuración y uso de Dashboards
  • Analizar datos de forma visual

Requisitos Alumnos

Haber cursado el módulo de Fundamentos IoT o tener experiencia en plataformas IoT.

Contenido del Curso

  • Plataformas Cloud Generalistas
  • Plataformas Cloud Especializadas
  • Práctica de Plataformas Cloud
  • Plataformas Privadas/Libres
  • Práctica Plataformas Privadas/Libres
  • Servicios IoT
  • Node-Red
  • Bases de Datos
  • Dashboards
  • Ejemplos prácticos IoT

Desarrollo Soluciones IoT con Herramientas Libres (Nivel 5)

Objetivo

Este curso pretende unificar todos los conocimiento adquiridos en los anteriores cursos del itinerario IoT para hacer un proyecto “full stack” de IoT.

Unificar los conocimientos adquiridos en los otros cursos, identificar necesidades reales con respuestas desde el IoT y desarrollar una solución específica para una necesidad.

Toda la documentación del curso y el código usado es libre y accesible desde https://www.aprendiendoarduino.com/.

Al finalizar el curso el alumno será capaz de:

  • Proponer e implementar soluciones IoT como respuesta a necesidades específicas
  • Desarrollar un proyecto IoT  estructurado según las fases relacionadas en cada módulo  que de respuesta a una necesidad real del entorno del alumno

Requisitos Alumnos

Los alumnos deberán haber cursado todos los cursos del itinerario IoT o tener experiencia en el desarrollo de soluciones IoT

Contenido del Curso

  • Repaso de conceptos
  • Ejemplo de soluciones IoT Completas
  • Identificación de necesidades
  • Presentación preliminar
  • Desarrollo del Proyecto
  • Presentación del Proyecto
Anuncio publicitario

Conectividad IoT

IoT es conectar dispositivos a la Internet, para ello necesito una infraestructura de conexión y para ello disponemos de muchos tipos de conectividades que hay que conocer y saber cual es la más idónea en cada caso.

Una vez seleccionada la conectividad más adecuada para nuestro proyecto/aplicación, debemos buscar el HW IoT que disponga de esa conectividad o un HW adicional para conectar a nuestro dispositivo que conectemos a Internet.

Una de las principales ventajas de Arduino es que podemos dotarlo de comunicación de una forma sencilla añadiendo un shield o una breakout board y dispondremos de casi cualquier tipo de comunicación tanto de acceso a Internet como de para comunicar arduinos entre sí o con otros dispositivos de una red privada.

La tecnología de IoT se despliega de muchas maneras, por lo que no existe una única solución de red adecuada. Depende de la situación y de dónde se encuentren los dispositivos. Algunos de los factores que afectan la selección del tipo de red son:

  • el alcance de la red
  • el ancho de banda de la red
  • el uso de energía
  • la interoperabilidad
  • la conectividad intermitente
  • la seguridad

Una red cableada utiliza un cable Ethernet para conectarse a la red. El cable Ethernet se conecta a su vez a un DSL o a la pasarela de red. Las redes alámbricas son tecnología madura y es fácil conectarse si ya tiene líneas telefónicas, líneas de energía y líneas de cable coaxial.

Incluso en el caso de las redes inalámbricas, estas redes suelen estar conectadas a una red alámbrica en algún momento; por lo tanto, la red más utilizada es una híbrida de conectividad de red alámbrica e inalámbrica.

Articulo interesante redes: https://www.artik.io/blog/2015/iot-101-networks

Articulo interesante conectividad: https://www.artik.io/blog/2015/iot-101-connectivity

White paper sobre redes inlámbrica sub 1GHz: http://www.ti.com/lit/wp/swry017/swry017.pdf 

Guía de conectividad de IoT:  https://www.ibm.com/developerworks/library/iot-lp101-connectivity-network-protocols/index.html 

Interesante artículo sobre redes para IoT: https://www.redeweb.com/articulos/software/11-redes-inalambricas-fundamentales-para-internet-de-las-cosas/ 

IOT primeras redes IoT en Holanda y Corea: http://blogthinkbig.com/nace-la-primera-y-la-segunda-red-para-internet-de-las-cosas/

Muy buena explicación de comunicaciones: https://learn.adafruit.com/alltheiot-transports/introduction 

Redes Alambricas IoT (Wired)

Cuando en IoT se habla de confianza y seguridad a veces la mejor opción es la red cableada, siempre que ello sea posible.

Wired y Wireless tienen ventajas y desventajas cuando se trata de conectividad de red. La comprensión de estas ventajas e inconvenientes ayudará a tomar una decisión informada a la hora de aplicar una solución de IoT.

Implementaciones wired vs wireless: https://blog.senseware.co/2017/10/10/iot-implementations-wireless-vs-wired 

Ventajas de los dispositivos conectados con redes alambricas (wired):

  • Fiabilidad: Las conexiones Ethernet existen desde hace mucho más tiempo que la tecnología Wi-Fi, lo que la hace mucho más fiable. Son menos propensos a las conexiones caídas y son más confiables sin necesidad de depuración constante.
  • Velocidad: Las conexiones por cable se ven menos afectadas por factores locales como paredes, suelos, armarios, longitud de la habitación, interferencias de otros dispositivos electrónicos, etc. Esto permite que la conectividad por cable sea mucho más rápida que la inalámbrica. Las transmisiones de datos por cable no son sensibles a las distancias y la colocación de los dispositivos no tiene ningún efecto adverso en el rendimiento de la conexión.
  • Seguridad: Las conexiones por cable suelen estar alojadas detrás del cortafuegos de su red de área local (LAN) y, por lo tanto, permiten un control completo del sistema de comunicaciones. Esto significa que no hay datos de transmisión que puedan ser pirateados.

Desventajas:

  • Coste: Las conexiones por cable son más caras que las inalámbricas debido al costo del alambre, los costos de mano de obra para la instalación. En el caso de un cable dañado, los costes de reparación o sustitución son también muy elevados en comparación con las redes inalámbricas de mantenimiento relativamente bajo.
  • Movilidad: Las redes cableadas tendrían que estar enterradas en paredes, suelos y techos para llegar a los sensores que necesitan conectarse a ellas. Dado que los sensores son pequeños y pueden colocarse en cualquier lugar de una instalación, a veces sería físicamente imposible alcanzarlos.
  • Escalabilidad: La construcción y extensión de redes cableadas requiere planificación y presupuesto para su construcción. Los sistemas alámbricos necesitan que el hardware sea adquirido, instalado y configurado antes de que pueda ser completamente operativo. La escalabilidad sería un problema no sólo para que las redes funcionen rápidamente, sino también para la planificación y los costes.

Más información: https://medium.com/@hardy96tech/communication-wired-protocols-in-iot-ae263675f542

Ethernet

Un sistema para conectar una serie de sistemas informáticos para formar una red de área local, con protocolos para controlar el paso de información y evitar la transmisión simultánea por dos o más sistemas. Cada tarjeta de interfaz de red Ethernet (NIC) recibe un identificador único llamado dirección MAC. La dirección MAC se compone de un número de 48 bits. Dentro del número, los primeros 24 bits identifican al fabricante y se conocen como ID de fabricante o Identificador Único Organizativo (OUI), que es asignado por la autoridad de registro.

Ejemplo de red IoT de confianza ethernet: https://www.motioncontroltips.com/delivering-reliable-iot/

RS232

RS-232 es la abreviatura de Recommended Standard 232. Es básicamente un estándar de interfaz que se utiliza comúnmente en los puertos serie de los ordenadores y que define las características eléctricas y la temporización de las señales.

RS485/Modbus

RS-485 incrementa el número de dispositivos y define las características eléctricas necesarias para asegurar una señal adecuada. Puede crear redes de dispositivos conectados a un solo puerto serie RS-485. La inmunidad al ruido y la capacidad de caída múltiple hacen que el RS-485 sea la conexión serie de elección en aplicaciones industriales.

Fibra Óptica

El Internet de las cosas podría llevar la capacidad de la red hasta el punto en el que sólo la banda ancha entregada por la fibra óptica sería capaz de soportar.

Para cumplir con el verdadero potencial del Internet de las Cosas, en términos de accesibilidad, funcionalidad y capacidad de ampliación, los diferentes proveedores de servicio deberán garantizar el óptimo desempeño de las soluciones de acceso y anchos de banda que ofrecen.

Muchos dispositivos conectados pueden tener conexión fibra óptica no solo por las ventajas de ancho de banda sino por su fiabilidad e inmunidad a los ruidos

CAN BUS

Un protocolo serial multi-master basado en mensajes para la transmisión y recepción de datos del vehículo dentro de una red de área de controladores (Controller Area Network, CAN).

Diseñado inicialmente para aplicaciones de automoción en 1983, el bus CAN puede adaptarse a la industria aeroespacial, vehículos comerciales, automatización industrial y equipos médicos. A veces escrito como «CANbus», el bus CAN conecta múltiples unidades de control electrónico (ECUs) también conocidas como nodos.

Guía de comunicación CAN BUS: http://www.libelium.com/downloads/documentation/canbus_communication_guide.pdf

Más información: https://humanizationoftechnology.com/redes-cableadas-can-bus-para-internet-de-las-cosas-desde-una-plataforma-abierta/revista/iot/01/2019/

Puerto Serie 

UART es el nombre del hardware utilizado para una interfaz serie RS-232. UART significa Universal Asynchronous Receiver Transmitter. Los primeros PCs tenían un chip UART, pero esta funcionalidad se encuentra ahora dentro de un chip más grande que también contiene otras características de E/S. Un UART puede ser utilizado cuando no se requiere alta velocidad o se requiere un enlace de comunicación económico entre dos dispositivos. La comunicación UART es muy barata: asíncrona porque no se transmite ninguna señal de reloj.

Redes Inalámbricas IoT

Como la mayoría de las redes cableadas tienden a ser voluminosas y costosas, las implementaciones de IoT inalámbricas son la solución común. La configuración de una red inalámbrica es un proceso sencillo que implica configurarlo para que funcione en un abrir y cerrar de ojos.

La IoT utiliza cuatro modelos de comunicación comunes:

  • Dispositivo a dispositivo
  • Dispositivo a nube
  • Dispositivo a puerta de enlace (gateway)
  • Compartir datos de back-end.

El tipo de tecnología inalámbrica implementada dependerá del modelo de comunicación.

Device to Device utiliza Bluetooth, Z-Wave o Zigbee ya que implica la transmisión de pequeñas cantidades de datos.

Device to Cloud utiliza tecnología WiFi o celular. Las conexiones en la nube permiten a los usuarios obtener acceso al dispositivo de forma remota.

Device to Gateway utiliza la red de su dispositivo inteligente como un teléfono inteligente o un reloj inteligente. Ejemplos de esto son los rastreadores de fitness que cargan datos en su aplicación móvil.

Backend Data Sharing extiende el dispositivo único a las comunicaciones en nube a terceros autorizados. Esto puede utilizar cualquier conectividad de red como WiFi, celular o incluso por satélite. Todo se reduce al caso de uso de su negocio

Ventajas de las comunicaciones Wireless:

  • Escalable: Las redes inalámbricas no requieren ninguna instalación de hardware. Típicamente involucran configuraciones y pueden estar listos y funcionando en poco tiempo. También se pueden ampliar muy fácilmente sin tener en cuenta las obstrucciones de la instalación. Las tecnologías inalámbricas más recientes utilizan plug and play, incluida la detección automática que ayuda a reducir los tiempos de instalación.
  • Bajo coste: Debido al avance en la tecnología inalámbrica, así como al número de fabricantes, el coste de la tecnología inalámbrica ha ido disminuyendo en los últimos años. Además, la mayoría de los sensores inalámbricos vienen con nodos que se pueden ampliar añadiendo nodos adicionales según los requisitos.

Desventajas de las comunicaciones Wireless:

  • Interferencia: Los dispositivos electrónicos en las proximidades de las redes inalámbricas pueden interferir fácilmente y pueden causar pérdidas en la conexión o reducir la calidad de la misma. Esto puede conducir a la pérdida de productividad hasta que el problema se identifique y se solucione.
  • Velocidad más lenta: Cuando se trata de datos en tiempo real, es imperativo que los datos se transmitan y estén disponibles lo más rápido posible. Las redes inalámbricas son susceptibles a una mayor latencia e interferencia de señal que afecta a la velocidad y consistencia de los datos.

ZigBee

ZigBee es una tecnología inalámbrica más centrada en aplicaciones domóticas e industriales. Los perfiles ZigBee PRO y ZigBee Remote Control (RF4CE) se basan en el protocolo IEEE 802.15.4, una tecnología de red inalámbrica que opera a 2,4GHz en aplicaciones que requieren comunicaciones con baja tasa de envío de datos dentro de áreas delimitadas con un alcance de 100 metros, como viviendas o edificios.

IEEE 802.15.4 es un estándar que define el nivel físico y el control de acceso al medio de redes inalámbricas de área personal con tasas bajas de transmisión de datos (low-rate wireless personal area network, LR-WPAN). El grupo de trabajo IEEE 802.15 es el responsable de su desarrollo. También es la base sobre la que se define la especificación de ZigBee, cuyo propósito es ofrecer una solución completa para este tipo de redes construyendo los niveles superiores de la pila de protocolos que el estándar no cubre.

ZigBee/RF4CE tiene algunas ventajas significativas como el bajo consumo en sistemas complejos, seguridad superior, robustez, alta escalabilidad y capacidad para soportar un gran número de nodos. Así, es una tecnología bien posicionada para marcar el camino del control wireless y las redes de sensores en aplicaciones IoT y M2M.

  • Estándar: ZigBee 3.0 basado en IEEE 802.15.4
  • Frecuencia: 2.4GHz
  • Alcance: 10-100m
  • Velocidad de transferencia: 250kbps

XBee

es el nombre comercial del Digi de una familia de módulos de comunicación por radio y están basados en el estándar zigbee, pero digi tiene muchos Xbee y algunos son zigbee estándar y otros son propietarios o modificaciones del estándar. Existen muchos módulos Xbee basados en el estándar IEEE 802.15.4

Más información: https://aprendiendoarduino.wordpress.com/2016/11/16/zigbeexbee/

WiFi

Normalmente la conectividad WiFi es la opción obvia elegida por los desarrolladores dada la omnipresencia de WiFi en entornos domésticos y comerciales: existe en la actualidad una extensa infraestructura ya instalada que transfiere datos con rapidez y permite manejar grandes cantidades de datos. Actualmente, el standard WiFi más habitual utilizado en los hogares y en muchas empresas es el 802.11n, ofreciendo un rendimiento significativo en un rango de cientos de megabits por segundo, muy adecuado para la transferencia de archivos, pero que consume demasiada potencia para desarrollar aplicaciones IoT.

  • Estándar: Basado en 802.11n
  • Frecuencia: 2,4GHz y 5GHz
  • Alcance: Aproximadamente 50m
  • Velocidad de transferencia: hasta 600 Mbps, pero lo habitual es 150-200Mbps, en función del canal de frecuencia utilizado y del número de antenas (el standard 802.11-ac ofrece desde 500Mbps hasta 1Gbps)

Bluetooth

Bluetooth es una de las tecnologías de transmisión de datos de corto alcance más establecidas, muy importante en el ámbito de la electrónica de consumo. Las expectativas apuntan a que será clave para desarrollar dispositivos wearable, ya que permitirá el establecimiento de conexiones IoT, probablemente a través de un smartphone.

El nuevo Bluetooth de baja energía, también conocido como Bluetooth LE o Bluetooth Smart, es otro protocolo importante para desarrollar aplicaciones IoT. Se caracteriza por ofrecer un alcance similar al de la tecnología Bluetooth normal pero con un consumo de energía significativamente reducido.

Es importante destacar que la versión 4.2, gracias a la incorporación del Internet Protocol Support Profile, permite conectarse directamente a internet mediante IPv6/6LoWPAN. Esto facilita el utilizar la infraestructura IP existente para gestionar dispositivos Bluetooth Smart basado en “edge computing”.

  • Estándar: Bluetooth 4.2
  • Frecuencia: 2,4GHz (ISM)
  • Alcance: 50-150m (Smart/LE)
  • Velocidad de transferencia: 1Mbps (Smart/LE)

Thread

En la actualidad, el protocolo de red más innovador basado en IPv6 es Thread. Diseñado para domótica, está basado en 6LowPAN, y del mismo modo que aquel, no es un protocolo de aplicaciones IoT como Bluetooth o ZigBee. Se diseñó como un complemento WiFi, puesto que aunque la tecnología Wi-Fi funciona muy bien en dispositivos de consumo, tiene limitaciones al utilizar en configuraciones de domótica.

Lanzado a mediados del 2014 por Thread Group, este protocolo sin canon de uso se basa en varios protocolos como IEEE 802.15.4, IPv6 y 6LoWPAN.

Es una solución resistente basada en IP para aplicaciones IoT.

Diseñado para trabajar sobre chips IEEE 802.15.4 ya existentes de fabricantes como Freescale y Silicon Labs, Thread es compatible con redes de topología de malla al utilizar radio transceptores IEEE802.15.4, siendo capaz de manejar hasta 250 nodos con altos niveles de autenticación y cifrado.

Una actualización de software relativamente sencilla permite a los usuarios utilizar thread en dispositivos ya compatibles con IEEE 802.15.4.

  • Estándar: Thread, basado en IEEE802.15.4 y 6LowPAN
  • Frecuencia: 2,4GHz (ISM)
  • Alcance: N/A
  • Velocidad de transferencia: N/A

Red de telefonía móvil

Cualquier aplicación IoT que necesite funcionar en grandes áreas puede beneficiarse de las ventajas de la comunicación móvil GSM/3G/4G.

La red de telefonía móvil es capaz de enviar grandes cantidades de datos, especialmente a través de 4G, aunque el consumo de energía y el coste económico de la conexión podrían ser demasiado altos para muchas aplicaciones.

Sin embargo, puede ser ideal para proyectos que integren sensores y que no requieran un ancho de banda muy grande para enviar datos por Internet.

  • Estándares: GSM/GPRS/EDGE (2G), UMTS/HSPA (3G), LTE (4G)
  • Frecuencias: 900 / 1800 / 1900 / 2100
  • Alcance: hasta 35km para GSM; hasta 200km para HSPA
  • Velocidad de transferencia (descarga habitual): 35-170kps (GPRS), 120-384kbps (EDGE), 384Kbps-2Mbps (UMTS), 600kbps-10Mbps (HSPA), 3-10Mbps (LTE)

Hologram

Conectividad celular para IoT

Web: https://hologram.io/

HW compatible de Hologram: https://hologram.io/hologram-compatible-hardware/

Permite una sim gratuita para probar con 1MB mensual 

Pricing: https://hologram.io/pricing/

Neul

El concepto de este sistema es similar al de Sigfox y funciona en la banda sub-1GHz. Neul aprovecha pequeños fragmentos de la “banda blanca” de las estaciones de TV para ofrecer alta escabilidad, amplia cobertura y bajo costes.

Este sistema se basa en el chip Iceni, que se comunica utilizando los “banda blanca” de la radio para acceder al espectro UHF de alta calidad. Ya está disponible debido a la transición analógica a la televisión digital.

La tecnología de comunicaciones que utiliza se llama Weightless, que es una nueva tecnología de red inalámbrica ampliada diseñada para aplicaciones IoT que compite contra las soluciones GPRS, 3G, CDMA y LTE WAN.

La velocidad de transferencia de datos puede ir de unos bits por segundo hasta 100 Mbps en el mismo enlace. Desde el punto de vista del consumo, los dispositivos consumen tan solo de 20 a 30 mA, es decir, de 10 a 15 años de autonomía con 2 pilas AA.

Para poder emplear esta tecnología hay que tener en cuenta la decisión que se haya tomado acerca del uso de las frecuencias de la banda blanda.

  • Estándar: Neul
  • Frecuencia: 900MHz (ISM), 458MHz (UK), 470-790MHz (espacios en blanco)
  • Alcance: 10km
  • Velocidad de transferencia: Desde unos pocos bps hasta 100kbps

6LoWPAN

6LoWPAN (IPv6 over Low power Wireless Personal Area Networks) es un estándar que posibilita el uso de IPv6 sobre redes basadas en el estándar IEEE 802.15.4 (LoRa, zigbee, etc…). Hace posible que dispositivos como los nodos de una red inalámbrica puedan comunicarse directamente con otros dispositivos IP.

6LowPAN es una tecnología inalámbrica basada en IP. En vez de tratarse de una tecnología de protocolos de aplicaciones IoT, como Bluetooth o ZigBee, 6LowPAN es un protocolo de red que permite mecanismos de encapsulado y compresión de cabeceras. Esta tecnología ofrece libertad de banda de frecuencia y capa física, por lo que se puede utilizar a través de múltiples plataformas de comunicaciones, como Ethernet, Wi-Fi, 802.15.4 y sub-1GHz ISM.

Capas de red:

6LoWPAN: 

6LowPAN (IPv6 Low-power wireless Personal Area Network) es una tecnología inalámbrica basada en IP muy importante. En vez de tratarse de una tecnología de protocolos de aplicaciones IoT, como Bluetooth o ZigBee, 6LowPAN es un protocolo de red que permite mecanismos de encapsulado y compresión de cabeceras. Esta tecnología ofrece libertad de banda de frecuencia y capa física, por lo que se puede utilizar a través de múltiples plataformas de comunicaciones, como Ethernet, Wi-Fi, 802.15.4 y sub-1GHz ISM.

Una característica clave es la introducción de la pila IPv6 (protocolo de internet versión 6), una innovación clave en el avance de IoT en los últimos años, ya que con IPv6 se ofrecen aproximadamente 5 x 10E28 direcciones IP a nivel global, permitiendo que cualquier objeto o dispositivo embebido tenga su propia dirección IP única para conectarse a Internet.

Ha sido diseñada especialmente para el hogar y la automatización de edificios proporcionando un mecanismo de transporte básico para producir sistemas de control complejos e interconexión de dispositivos de un modo económico a través de una red inalámbrica de bajo consumo.

Diseñada para enviar paquetes IPv6 sobre redes IEEE 802.15.4, para luego implementar protocolos superiores como TCP, UDP, HTTP, COAP, MQTT y websockets, 6LowPAN es una red de topología en malla robusta, escalable y auto-regenerativa. Los routers pueden encaminar datos enviados a otros dispositivos, mientras que los hosts permanecen inactivos mucho tiempo.

  • Estándar: RFC6282
  • Frecuencia: adaptable a múltiples capas físicas como Bluetooth Smart (2.4GHz), ZigBee o comunicación RF de bajo consumo (sub-1GHz)
  • Alcance: N/A
  • Velocidad de transferencia: N/A

Hardware 6LoWPAN: https://zolertia.io/ 

LoRaWAN

Es una especificación de una red LPWAN (Low Power Wide Area Network) propuesta por la LoRa Alliance y pensada para comunicar dispositivos de bajo coste y bajo consumo alimentados por baterías. La especificación cubre las capas PHY y MAC de la red, dejando a las aplicaciones el resto de capas. En la banda ISM de 868MHz (915 MHz en otras regiones), con un bitrate de hasta decenas de kbps (de 0.3 kbps hasta  50 kbps).

Enlaces:

Esta tecnología se parece en algunos aspectos a Sigfox y a Neul. LoRaWAN está diseñada para implementar redes de área amplia (WAN) con características específicas para soportar comunicaciones móviles, bidireccionales, económicas y seguras para aplicaciones de IoT, M2M, ciudades inteligentes y aplicaciones industriales.

Optimizada para bajo consumo de energía y para ofrecer amplias redes con millones y millones de dispositivos, sus velocidades de transferencia de datos van desde 0,3 kbps hasta 50 kbps.

  • Estándar: LoRaWAN
  • Frecuencia: Varias
  • Alcance: 2-5km (entorno urbano), 15km (entorno rural)
  • Velocidad de transferencia: 0,3-50 kbps.

Z-Wave

Z-Wave es una tecnología RF de bajo consumo diseñada inicialmente para productos de domótica como controladores de iluminación y sensores. Optimizado para la comunicación fiable de baja latencia de pequeños paquetes de datos, alcanza velocidades de datos de hasta 100kbit/s, opera en la banda de sub-1 GHz y es robusta frente a interferencias de Wi-Fi y otras tecnologías inalámbricas en el rango 2,4 GHz como Bluetooth o ZigBee. Es totalmente compatible con redes de topología de malla, no necesita un nodo coordinador y es muy escalable, permitiendo controlar hasta 232 dispositivos.

Z-Wave utiliza un protocolo más simple que otras tecnologías lo que permite una mayor rapidez en el desarrollo, pero el único fabricante de chips compatibles es la empresa Sigma Design, en comparación con la multitud de empresas que ofrecen productos de otras tecnologías inalámbricas como ZigBee o Bluetooth.

  • Estándar: Z-Wave Alliance ZAD12837 / ITU-T G.9959
  • Frecuencia: 900MHz (Banda ISM)
  • Alcance: 30m
  • Velocidad de transferencia: 9,6/40/100kbit/s

NFC

NFC (Near Field Communication) es una tecnología que permite dos vías simultáneas de interacción segura entre dispositivos electrónicos, siendo especialmente adecuada para smartphones, permitiendo a los consumidores realizar transacciones de pago, acceder al contenido digital y conectar dispositivos electrónicos, todo ellos sin contacto. Esencialmente, amplía la capacidad de la tecnología contacless de las tarjetas inteligentes permitiendo conexiones punto a punto y modos de funcionamiento activos y pasivos.

  • Estándar: ISO/IEC 18000-3
  • Frecuencia: 13.56MHz (ISM)
  • Alcance: 10cm
  • Velocidad de transf.: 100–420kbps

nRF24

Este dispositivo NRF2401, integra en un único chip, toda la electrónica y bloques funcionales precisos, para establecer comunicaciones RF (Radio Frecuencia) entre dos o más puntos a diferentes velocidades, (Hasta 2  Mb/seg) con corrección de errores y protocolo de reenvío cuando es necesario, sin intervención del control externo, lo que nos permite aislarnos de todo el trabajo sucio y complicado relacionado con la transmisión física.

Información de producto: http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01 

Wize

La tecnología Wize se basa en la frecuencia de 169 MHz y se ha utilizado durante más de 10 años para la medición inteligente por parte de las compañías de agua y gas. La tecnología ha mostrado un rendimiento excepcional, especialmente en lo que se refiere a la penetración de la radio en interiores. Esto lo hace perfecto para aplicaciones de IoT en entornos urbanos donde las paredes suelen mitigar la propagación de otras comunicaciones de radio.

Características.

  • Basado en una norma robusta y fiable EN-13757 – Wireless M-Bus
  • Capaz de alcanzar a larga distancia, hasta 20 KM
  • Consumo de energía extremadamente bajo: hasta 20 años de duración de la batería con 1 mensaje/día
  • Bidireccional con programación por aire (OTA)
  • Penetración profunda de la radio en interiores
  • Solución flexible: Sin bloqueo de chip, sin bloqueo de telecomunicaciones, posibilidad de utilizar la red existente o crear nuevas redes.

Protocolo: https://www.allwize.io/wize-protocol

Wize Alliance: https://www.wize-alliance.com/

Más información: https://www.allwize.io/post/the-wize-protocol-the-new-trendy-iot-standard

Dispositivo compatible con Arduino: https://www.kickstarter.com/projects/1230929587/extreme-lpwa-arduino-board-for-iot-using-the-wize?lang=es

Sigfox

Es una solución de conectividad celular mundial para el Internet of Things pensada para comunicaciones de baja velocidad que permite reducir los precios y el consumo de energía para los dispositivos conectados. La solución de conectividad SIGFOX se basa en una infraestructura de antenas y de estaciones de base totalmente independientes de las redes existentes.

En la red SIGFOX se transmiten mensajes de 12 bytes, pudiendo enviar 140 mensajes al día.

Sigfox trabaja con fabricantes como Texas Instruments, Atmel, Silicon Labs y otros para poder ofrecer distintos tipos de SOC, transceptores y componentes de conexión a su red. En el caso de smartphones y tablets, actualmente no son compatibles con esta red, pero, al no tener licencia de uso, su inclusión sería realmente económica y sencilla.

Es una alternativa de amplio alcance es Sigfox, que en términos de alcance está entre Wi-Fi y la comunicación móvil. Utiliza bandas ISM, que se pueden utilizar sin necesidad de adquirir licencias.

Sigfox responde a las necesidades de muchas aplicaciones M2M que funcionan con una batería pequeña y solo requieren niveles menores de transferencia de datos, allí donde WiFi se queda demasiado corto y la comunicación móvil es muy cara y consume demasiada energía.

Sigfox utiliza una tecnología llamada Ultra Narrow Band (UNB) diseñada para funcionar con bajas velocidades de transferencias de 10 a 1.000 bits por segundo.

Solo consume 50 microvatios (la comunicación móvil consume 5.000 microvatios) además de poder mantenerse en stand-by 20 años con una batería 2.5Ah (0,2 años para comunicaciones móviles).

Esta tecnología es robusta, energéticamente eficiente y funciona como una red escalable que puede comunicarse con millones de dispositivos móviles a lo largo de muchos kilómetros cuadrados. Así pues, es adecuada para aplicaciones M2M como: contadores inteligentes, monitores médicos, dispositivos de seguridad, alumbrado público y sensores ambientales.

El sistema Sigfox utiliza los transceptores inalámbricos que funcionan en la banda sub-1GHz ofreciendo un rendimiento excepcional, mayor alcance y un consumo mínimo.

  • Estándar: Sigfox
  • Frecuencia: 900MHz
  • Alcance: 30-50km (ambientes rurales), 3-10km (ambientes urbanos)
  • Velocidad de transferencia: 10-1000bps

Más información: https://www.rs-online.com/designspark/eleven-internet-of-things-iot-protocols-you-need-to-know-about

Sigfox

Sigfox: https://www.aprendiendoarduino.com/2018/03/07/sigfox/

Arduino y Sigfox: https://www.aprendiendoarduino.com/2018/03/05/arduino-y-sigfox/

Arduino MKRFox 1200: https://www.aprendiendoarduino.com/2018/03/05/arduino-mkrfox1200/

Demo MKRFox 1200: https://www.aprendiendoarduino.com/2018/03/05/demo-mkrfox1200/

Tutorial paso a paso de Sigfox: https://programarfacil.com/blog/arduino-blog/arduino-mkrfox1200-sigfox-lpwan/

Conectividad IoT

Una de las principales ventajas de Arduino es que podemos dotarlo de comunicación de una forma sencilla añadiendo un shield o una breakout board y dispondremos de casi cualquier tipo de comunicación tanto de acceso a Internet como de para comunicar arduinos entre sí o con otros dispositivos de una red privada.

Articulo interesante redes: https://www.artik.io/blog/2015/iot-101-networks

Articulo interesante conectividad: https://www.artik.io/blog/2015/iot-101-connectivity

Leer este white paper: http://www.ti.com/lit/wp/swry017/swry017.pdf

Guía de conectividad de IoT:  https://www.ibm.com/developerworks/library/iot-lp101-connectivity-network-protocols/index.html

Interesante artículo sobre redes para IoT: https://www.redeweb.com/articulos/software/11-redes-inalambricas-fundamentales-para-internet-de-las-cosas/

IOT primeras redes IoT en Holanda y Corea: http://blogthinkbig.com/nace-la-primera-y-la-segunda-red-para-internet-de-las-cosas/

Muy buena explicación de comunicaciones: https://learn.adafruit.com/alltheiot-transports/introduction

Redes Inalámbricas IoT

ZigBee

ZigBee es una tecnología inalámbrica más centrada en aplicaciones domóticas e industriales. Los perfiles ZigBee PRO y ZigBee Remote Control (RF4CE) se basan en el protocolo IEEE 802.15.4, una tecnología de red inalámbrica que opera a 2,4GHz en aplicaciones que requieren comunicaciones con baja tasa de envío de datos dentro de áreas delimitadas con un alcance de 100 metros, como viviendas o edificios.

IEEE 802.15.4 es un estándar que define el nivel físico y el control de acceso al medio de redes inalámbricas de área personal con tasas bajas de transmisión de datos (low-rate wireless personal area network, LR-WPAN). El grupo de trabajo IEEE 802.15 es el responsable de su desarrollo. También es la base sobre la que se define la especificación de ZigBee, cuyo propósito es ofrecer una solución completa para este tipo de redes construyendo los niveles superiores de la pila de protocolos que el estándar no cubre.

ZigBee/RF4CE tiene algunas ventajas significativas como el bajo consumo en sistemas complejos, seguridad superior, robustez, alta escalabilidad y capacidad para soportar un gran número de nodos. Así, es una tecnología bien posicionada para marcar el camino del control wireless y las redes de sensores en aplicaciones IoT y M2M.

  • Estándar: ZigBee 3.0 basado en IEEE 802.15.4
  • Frecuencia: 2.4GHz
  • Alcance: 10-100m
  • Velocidad de transferencia: 250kbps

XBee

es el nombre comercial del Digi de una familia de módulos de comunicación por radio y están basados en el estándar zigbee, pero digi tiene muchos Xbee y algunos son zigbee estándar y otros son propietarios o modificaciones del estándar. Existen muchos módulos Xbee basados en el estándar IEEE 802.15.4

Más información: https://aprendiendoarduino.wordpress.com/2016/11/16/zigbeexbee/

WiFi

Normalmente la conectividad WiFi es la opción obvia elegida por los desarrolladores dada la omnipresencia de WiFi en entornos domésticos y comerciales: existe en la actualidad una extensa infraestructura ya instalada que transfiere datos con rapidez y permite manejar grandes cantidades de datos. Actualmente, el standard WiFi más habitual utilizado en los hogares y en muchas empresas es el 802.11n, ofreciendo un rendimiento significativo en un rango de cientos de megabits por segundo, muy adecuado para la transferencia de archivos, pero que consume demasiada potencia para desarrollar aplicaciones IoT.

  • Estándar: Basado en 802.11n
  • Frecuencia: 2,4GHz y 5GHz
  • Alcance: Aproximadamente 50m
  • Velocidad de transferencia: hasta 600 Mbps, pero lo habitual es 150-200Mbps, en función del canal de frecuencia utilizado y del número de antenas (el standard 802.11-ac ofrece desde 500Mbps hasta 1Gbps)

Bluetooth

Bluetooth es una de las tecnologías de transmisión de datos de corto alcance más establecidas, muy importante en el ámbito de la electrónica de consumo. Las expectativas apuntan a que será clave para desarrollar dispositivos wearable, ya que permitirá el establecimiento de conexiones IoT, probablemente a través de un smartphone.

El nuevo Bluetooth de baja energía, también conocido como Bluetooth LE o Bluetooth Smart, es otro protocolo importante para desarrollar aplicaciones IoT. Se caracteriza por ofrecer un alcance similar al de la tecnología Bluetooth normal pero con un consumo de energía significativamente reducido.

Es importante destacar que la versión 4.2, gracias a la incorporación del Internet Protocol Support Profile, permite conectarse directamente a internet mediante IPv6/6LoWPAN. Esto facilita el utilizar la infraestructura IP existente para gestionar dispositivos Bluetooth Smart basado en “edge computing”.

  • Estándar: Bluetooth 4.2
  • Frecuencia: 2,4GHz (ISM)
  • Alcance: 50-150m (Smart/LE)
  • Velocidad de transferencia: 1Mbps (Smart/LE)

Thread

En la actualidad, el protocolo de red más innovador basado en IPv6 es Thread. Diseñado para domótica, está basado en 6LowPAN, y del mismo modo que aquel, no es un protocolo de aplicaciones IoT como Bluetooth o ZigBee. Se diseñó como un complemento WiFi, puesto que aunque la tecnología Wi-Fi funciona muy bien en dispositivos de consumo, tiene limitaciones al utilizar en configuraciones de domótica.

Lanzado a mediados del 2014 por Thread Group, este protocolo sin canon de uso se basa en varios protocolos como IEEE 802.15.4, IPv6 y 6LoWPAN.

Es una solución resistente basada en IP para aplicaciones IoT.

Diseñado para trabajar sobre chips IEEE 802.15.4 ya existentes de fabricantes como Freescale y Silicon Labs, Thread es compatible con redes de topología de malla al utilizar radio transceptores IEEE802.15.4, siendo capaz de manejar hasta 250 nodos con altos niveles de autenticación y cifrado.

Una actualización de software relativamente sencilla permite a los usuarios utilizar thread en dispositivos ya compatibles con IEEE 802.15.4.

  • Estándar: Thread, basado en IEEE802.15.4 y 6LowPAN
  • Frecuencia: 2,4GHz (ISM)
  • Alcance: N/A
  • Velocidad de transferencia: N/A

Red de telefonía móvil

Cualquier aplicación IoT que necesite funcionar en grandes áreas puede beneficiarse de las ventajas de la comunicación móvil GSM/3G/4G.

La red de telefonía móvil es capaz de enviar grandes cantidades de datos, especialmente a través de 4G, aunque el consumo de energía y el coste económico de la conexión podrían ser demasiado altos para muchas aplicaciones.

Sin embargo, puede ser ideal para proyectos que integren sensores y que no requieran un ancho de banda muy grande para enviar datos por Internet.

  • Estándares: GSM/GPRS/EDGE (2G), UMTS/HSPA (3G), LTE (4G)
  • Frecuencias: 900 / 1800 / 1900 / 2100
  • Alcance: hasta 35km para GSM; hasta 200km para HSPA
  • Velocidad de transferencia (descarga habitual): 35-170kps (GPRS), 120-384kbps (EDGE), 384Kbps-2Mbps (UMTS), 600kbps-10Mbps (HSPA), 3-10Mbps (LTE)

Neul

El concepto de este sistema es similar al de Sigfox y funciona en la banda sub-1GHz. Neul aprovecha pequeños fragmentos de la “banda blanca” de las estaciones de TV para ofrecer alta escabilidad, amplia cobertura y bajo costes.

Este sistema se basa en el chip Iceni, que se comunica utilizando los “banda blanca” de la radio para acceder al espectro UHF de alta calidad. Ya está disponible debido a la transición analógica a la televisión digital.

La tecnología de comunicaciones que utiliza se llama Weightless, que es una nueva tecnología de red inalámbrica ampliada diseñada para aplicaciones IoT que compite contra las soluciones GPRS, 3G, CDMA y LTE WAN.

La velocidad de transferencia de datos puede ir de unos bits por segundo hasta 100 Mbps en el mismo enlace. Desde el punto de vista del consumo, los dispositivos consumen tan solo de 20 a 30 mA, es decir, de 10 a 15 años de autonomía con 2 pilas AA.

Para poder emplear esta tecnología hay que tener en cuenta la decisión que se haya tomado acerca del uso de las frecuencias de la banda blanda.

  • Estándar: Neul
  • Frecuencia: 900MHz (ISM), 458MHz (UK), 470-790MHz (espacios en blanco)
  • Alcance: 10km
  • Velocidad de transferencia: Desde unos pocos bps hasta 100kbps

6LoWPAN

6LowPAN (IPv6 Low-power wireless Personal Area Network) es una tecnología inalámbrica basada en IP muy importante. En vez de tratarse de una tecnología de protocolos de aplicaciones IoT, como Bluetooth o ZigBee, 6LowPAN es un protocolo de red que permite mecanismos de encapsulado y compresión de cabeceras. Esta tecnología ofrece libertad de banda de frecuencia y capa física, por lo que se puede utilizar a través de múltiples plataformas de comunicaciones, como Ethernet, Wi-Fi, 802.15.4 y sub-1GHz ISM.

Una característica clave es la introducción de la pila IPv6 (protocolo de internet versión 6), una innovación clave en el avance de IoT en los últimos años, ya que con IPv6 se ofrecen aproximadamente 5 x 10E28 direcciones IP a nivel global, permitiendo que cualquier objeto o dispositivo embebido tenga su propia dirección IP única para conectarse a Internet.

Ha sido diseñada especialmente para el hogar y la automatización de edificios proporcionando un mecanismo de transporte básico para producir sistemas de control complejos e interconexión de dispositivos de un modo económico a través de una red inalámbrica de bajo consumo.

Diseñada para enviar paquetes IPv6 sobre redes IEEE 802.15.4, para luego implementar protocolos superiores como TCP, UDP, HTTP, COAP, MQTT y websockets, 6LowPAN es una red de topología en malla robusta, escalable y auto-regenerativa. Los routers pueden encaminar datos enviados a otros dispositivos, mientras que los hosts permanecen inactivos mucho tiempo.

  • Estándar: RFC6282
  • Frecuencia: adaptable a múltiples capas físicas como Bluetooth Smart (2.4GHz), ZigBee o comunicación RF de bajo consumo (sub-1GHz)
  • Alcance: N/A
  • Velocidad de transferencia: N/A

LoRaWAN

Es una especificación de una red LPWAN (Low Power Wide Area Network) propuesta por la LoRa Alliance y pensada para comunicar dispositivos de bajo coste y bajo consumo alimentados por baterías. La especificación cubre las capas PHY y MAC de la red, dejando a las aplicaciones el resto de capas. En la banda ISM de 868MHz (915 MHz en otras regiones), con un bitrate de hasta decenas de kbps (de 0.3 kbps hasta  50 kbps).

Enlaces:

Esta tecnología se parece en algunos aspectos a Sigfox y a Neul. LoRaWAN está diseñada para implementar redes de área amplia (WAN) con características específicas para soportar comunicaciones móviles, bidireccionales, económicas y seguras para aplicaciones de IoT, M2M, ciudades inteligentes y aplicaciones industriales.

Optimizada para bajo consumo de energía y para ofrecer amplias redes con millones y millones de dispositivos, sus velocidades de transferencia de datos van desde 0,3 kbps hasta 50 kbps.

  • Estándar: LoRaWAN
  • Frecuencia: Varias
  • Alcance: 2-5km (entorno urbano), 15km (entorno rural)
  • Velocidad de transferencia: 0,3-50 kbps.

Z-Wave

Z-Wave es una tecnología RF de bajo consumo diseñada inicialmente para productos de domótica como controladores de iluminación y sensores. Optimizado para la comunicación fiable de baja latencia de pequeños paquetes de datos, alcanza velocidades de datos de hasta 100kbit/s, opera en la banda de sub-1 GHz y es robusta frente a interferencias de Wi-Fi y otras tecnologías inalámbricas en el rango 2,4 GHz como Bluetooth o ZigBee. Es totalmente compatible con redes de topología de malla, no necesita un nodo coordinador y es muy escalable, permitiendo controlar hasta 232 dispositivos.

Z-Wave utiliza un protocolo más simple que otras tecnologías lo que permite una mayor rapidez en el desarrollo, pero el único fabricante de chips compatibles es la empresa Sigma Design, en comparación con la multitud de empresas que ofrecen productos de otras tecnologías inalámbricas como ZigBee o Bluetooth.

  • Estándar: Z-Wave Alliance ZAD12837 / ITU-T G.9959
  • Frecuencia: 900MHz (Banda ISM)
  • Alcance: 30m
  • Velocidad de transferencia: 9,6/40/100kbit/s

NFC

NFC (Near Field Communication) es una tecnología que permite dos vías simultáneas de interacción segura entre dispositivos electrónicos, siendo especialmente adecuada para smartphones, permitiendo a los consumidores realizar transacciones de pago, acceder al contenido digital y conectar dispositivos electrónicos, todo ellos sin contacto. Esencialmente, amplía la capacidad de la tecnología contacless de las tarjetas inteligentes permitiendo conexiones punto a punto y modos de funcionamiento activos y pasivos.

  • Estándar: ISO/IEC 18000-3
  • Frecuencia: 13.56MHz (ISM)
  • Alcance: 10cm
  • Velocidad de transf.: 100–420kbps

nRF24

Este dispositivo NRF2401, integra en un único chip, toda la electrónica y bloques funcionales precisos, para establecer comunicaciones RF (Radio Frecuencia) entre dos o más puntos a diferentes velocidades, (Hasta 2  Mb/seg) con corrección de errores y protocolo de reenvío cuando es necesario, sin intervención del control externo, lo que nos permite aislarnos de todo el trabajo sucio y complicado relacionado con la transmisión física.

Información de producto: http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01

Sigfox

Es una solución de conectividad celular mundial para el Internet of Things pensada para comunicaciones de baja velocidad que permite reducir los precios y el consumo de energía para los dispositivos conectados. La solución de conectividad SIGFOX se basa en una infraestructura de antenas y de estaciones de base totalmente independientes de las redes existentes.

En la red SIGFOX se transmiten mensajes de 12 bytes, pudiendo enviar 140 mensajes al día.

Sigfox trabaja con fabricantes como Texas Instruments, Atmel, Silicon Labs y otros para poder ofrecer distintos tipos de SOC, transceptores y componentes de conexión a su red. En el caso de smartphones y tablets, actualmente no son compatibles con esta red, pero, al no tener licencia de uso, su inclusión sería realmente económica y sencilla.

Es una alternativa de amplio alcance es Sigfox, que en términos de alcance está entre Wi-Fi y la comunicación móvil. Utiliza bandas ISM, que se pueden utilizar sin necesidad de adquirir licencias.

Sigfox responde a las necesidades de muchas aplicaciones M2M que funcionan con una batería pequeña y solo requieren niveles menores de transferencia de datos, allí donde WiFi se queda demasiado corto y la comunicación móvil es muy cara y consume demasiada energía.

Sigfox utiliza una tecnología llamada Ultra Narrow Band (UNB) diseñada para funcionar con bajas velocidades de transferencias de 10 a 1.000 bits por segundo.

Solo consume 50 microvatios (la comunicación móvil consume 5.000 microvatios) además de poder mantenerse en stand-by 20 años con una batería 2.5Ah (0,2 años para comunicaciones móviles).

Esta tecnología es robusta, energéticamente eficiente y funciona como una red escalable que puede comunicarse con millones de dispositivos móviles a lo largo de muchos kilómetros cuadrados. Así pues, es adecuada para aplicaciones M2M como: contadores inteligentes, monitores médicos, dispositivos de seguridad, alumbrado público y sensores ambientales.

El sistema Sigfox utiliza los transceptores inalámbricos que funcionan en la banda sub-1GHz ofreciendo un rendimiento excepcional, mayor alcance y un consumo mínimo.

  • Estándar: Sigfox
  • Frecuencia: 900MHz
  • Alcance: 30-50km (ambientes rurales), 3-10km (ambientes urbanos)
  • Velocidad de transferencia: 10-1000bps

Más información: https://www.rs-online.com/designspark/eleven-internet-of-things-iot-protocols-you-need-to-know-about

Sigfox

Sigfox: es una solución de conectividad celular mundial para el Internet of Things pensada para comunicaciones de baja velocidad que permite reducir los precios y el consumo de energía para los dispositivos conectados. La solución de conectividad SIGFOX se basa en una infraestructura de antenas y de estaciones de base totalmente independientes de las redes existentes.

Sigfox es una alternativa de amplio alcance, que en términos de alcance está entre Wi-Fi y la comunicación móvil. Utiliza bandas ISM, que se pueden utilizar sin necesidad de adquirir licencias. Sigfox responde a las necesidades de muchas aplicaciones M2M que funcionan con una batería pequeña y solo requieren niveles menores de transferencia de datos, allí donde WiFi se queda demasiado corto y la comunicación móvil es muy cara y consume demasiada energía.

Sigfox utiliza una tecnología llamada Ultra Narrow Band (UNB) diseñada para funcionar con bajas velocidades de transferencias de 10 a 1.000 bits por segundo.

Sigfox usa la modulación de banda estrecha BPSK para hacer redes IoT de área amplia (WAN). LoRaWan usa un formato de modulación y sigfox usa otra modulación.

Al transmitir a través de un canal UNB, es decir, 200Hz de ancho en la señalización SIGFOX, se requiere poca potencia para transmitir datos a distancias considerables con poca fecha de datos de aire. Los sistemas UNB se usan frecuentemente en un solo sentido, desde un sensor (dispositivo terminal) hasta una estación base, pero es posible que se requieran servicios bidireccionales de vez en cuando. Por ejemplo, un sensor en un aparcamiento que indica si un espacio en particular está vacío solo tiene que transmitirse una vez cuando un automóvil ingresa al espacio, y una vez más cuando un automóvil se va y opcionalmente abre su receptor unas cuantas veces cada hora para escuchar comandos del sistema.

SIGFOX es relativamente único en este mercado, como controlador de tecnología y proveedor de servicios, al ofrecer la certificación de módem para que el dispositivo compatible con SIGFOX se pueda suscribir a la red únicamente administrada por SIGFOX Network Operator (SNO). Esto es similar al operador de telecomunicaciones en el negocio celular, excepto que solo se enfoca en OBJETOS CONECTADOS. Su beneficio es el chipset disponible comercialmente que permite acelerar el crecimiento del mercado y la adopción temprana de tecnología. El servicio SIGFOX está actualmente disponible en 45 países en todo el mundo en 2018 https://www.sigfox.com/en/news/sigfox-expands-its-global-network-45-countries

Buena explicación de Adafruit para LoRa y Sigfox: https://learn.adafruit.com/alltheiot-transports/lora-sigfox

Ultra Narrow Band (UNB)

UNB, Ultra Narrow Band, tecnología de modulación utilizada por LPWAN por varias compañías, incluyendo:

  • Sigfox, UNB-based technology de origen francés.
  • Telensa: https://www.telensa.com/
  • NB-IoT, otro estándar de banda estrecha iniciado y completado por 3gpp con su lanzamiento de la serie de estandarizaciones de IoT. Más inforamción: https://en.wikipedia.org/wiki/NarrowBand_IOT
  • Nwave, es una empresa que hace cosas muy similares a SIGFOX utilizando el estándar Weightless. Usa una tecnología patentada desarrollada en cooperación con MIT. Su primera versión sin códigos de corrección de errores, también forma la base del protocolo abierto Weightless-N.
  • Weightless, a set of communication standards from the Weightless SIG
  • Neul, el concepto de este sistema es similar al de Sigfox y funciona en la banda sub-1GHz. Neul Utiliza la infraestructura actual móvil 4G para una solución NB-IoT
  • Z-Wave es una tecnología RF de bajo consumo diseñada inicialmente para productos de domótica como controladores de iluminación y sensores. Optimizado para la comunicación fiable de baja latencia de pequeños paquetes de datos, alcanza velocidades de datos de hasta 100kbit/s, opera en la banda de sub-1 GHz y es robusta frente a interferencias de Wi-Fi y otras tecnologías inalámbricas en el rango 2,4 GHz como Bluetooth o ZigBee. Más información: https://en.wikipedia.org/wiki/Z-Wave

Ultra Narrow Band (UNB) generalmente se refiere a la tecnología que transmite por un canal de espectro muy estrecho, es decir <1KHz, para lograr un enlace de larga distancia (5 km en el área urbana o 25km en campo abierto) para el enlace de datos entre el transmisor y el receptor. Esto tiene sentido desde el punto de vista teórico debido a la excelente relación entre la potencia y el ruido de recepción bajo en banda (los filtros de recepción estrechos  eliminan la mayor parte del ruido). Una alternativa es usar comunicación de banda ancha, alta velocidad de datos y agregar ganancia de codificación (como CSS en LORA). Sin embargo, dado el mismo rendimiento neto de datos, ambos sistemas tendrán un rango similar.

Más sobre UNB:

UNB solo permite un operador en una frecuencia libre, en españa es Sigfox operado por Cellnex.

Tecnología Sigfox

SigFox se encuentra disponible a través de los principales proveedores de chips y módulos del mercado (entre otros; Silicon Labs, Texas Instrument, Intel, Telecom Design, o ETSI), ofreciéndoles soporte y facilidades para la integración de sus equipos en la red. SigFox, que busca la normalización de sus soluciones para la comunicación en el IoT, permite así la interoperabilidad entre equipos de distintos fabricantes. Además de este soporte, SigFox ofrece la posibilidad de certificar los dispositivos con la marca SigFox Ready. Este proceso pretende clasificar los dispositivos en función de la cobertura y el alcance radio al que pueden tener acceso, con categorías de 0 a 3; siendo la 0 la que mejor calidad radio ofrece, y la 3 la que da una calidad más baja.

Una vez fabricados y certificados los dispositivos, queda desarrollar aplicaciones para ellos, de manera que se podrían reemplazar soluciones existentes porque el uso de SigFox fuese más conveniente en diversos campos de estudio, o bien se podrían desarrollar aplicaciones completamente nuevas e innovadoras para su introducción en el mercado.

SIGFOX emplea un sistema de tipo celular que permite que los dispositivos remotos se conecten usando tecnología de banda ultraancha (UNB).

Sigfox en Cellnex. https://www.cellnextelecom.com/productos-y-servicios/smart-cities-iot-seguridad/internet-of-things/

Cómo funciona la red sigfox:

Los tres pilares de Sigfox son: bajo coste, eficiencia y alcance global

Así, basándose en los tres pilares fundamentales, las características más destacables de lo que ofrecen a sus clientes son las siguientes:

  • Frecuencias libres (ISM) resistentes frente a interferencias
  • Conectividad Ultra Narrow Band (UNB) bidireccional
  • Compatibilidad con los chips existentes
  • Conforme con ETSI y FCC
  • Eficiencia energética: han logrado que la autonomía de algunos productos se prolongue hasta 15 años
  • Conexión sencilla (plug & play)
  • Gestión basada en la nube
  • Cobertura internacional
  • Libre de derechos y royalties

Interesante Comparativa de  redes LPWAN: https://www.sciencedirect.com/science/article/pii/S2405959517302953

Red Sigfox

SIGFOX es muy simple: ni códigos, ni configuración, ni peering. Busca algo sencillo y que el usuario no tenga que estar insertando códigos, PINs o claves complejas, por ello se adapta tan bien al IoT.

En el caso de smartphones y tablets, actualmente no son compatibles con esta red, pero, al no tener licencia de uso, su inclusión sería realmente económica y sencilla.

Lo cierto es que la red SIGFOX, por el uso que hace de los datos, tiene más de inspiración en el telégrafo o en Twitter que en las redes de banda ancha.

El enlace de radio SIGFOX utiliza bandas de radio ISM sin licencia. Las frecuencias exactas pueden variar de acuerdo a las regulaciones nacionales, pero, en Europa, la banda de 868 MHz es la más utilizada mientras que en EE UU es la de 915 MHz. La densidad de las células en la red SIGFOX se basa en un rango promedio de unos 30-50km en las zonas rurales. En las zonas urbanas, donde hay más obstáculos y el ruido es mayor, la densidad podrá reducirse a entre 3 y 10 km . Las distancias pueden ser mucho mayores para los nodos al aire libre, donde SIGFOX ha conseguido alcances de más de 1.000 kilómetros, lo que la hace especialmente adecuada para zonas despobladas o lejanas.

SigFox para la comunicación, proporciona una infraestructura de telecomunicación ya construida e independiente de cualquier red existente, con un bajo ancho de banda, y mejor adaptado a la transmisión de mensajes pequeños frente a otras alternativas, como LoRa. El uso del backend de SigFox (https://backend.sigfox.com/) como punto final de la comunicación, que recibirá los datos enviados por el módem y los presentará a través de su página web. Estos mensajes se reenviarán, mediante callback, a servicios externos para la generación de estadísticas y alarmas en tiempo real, haciendo innecesario el gateway que se usa con LoRa.