Archivo de la categoría: Software

Instalación Software Raspberry Pi

Instalar servidor LAMP

El acrónimo LAMP está compuesto por las iniciales de sus cuatro componentes: Linux, Apache, MySQL y PHP. Estos forman la infraestructura en el servidor, que hace posible la creación y el alojamiento de páginas web dinámicas. Los componentes individuales se acumulan unos sobre otros, por lo que esta plataforma también recibe el nombre de LAMP stack (del inglés “apilar”).

Su funcionamiento es muy simple. Linux sirve como sistema operativo base para ejecutar el servidor web Apache. Este último no puede interpretar contenidos dinámicos, pero es aquí donde PHP entra a ejercer sus funciones de programación del lado del servidor. El proceso funciona entonces de la siguiente manera: Apache le envía un código fuente al intérprete PHP, incluyendo la información correspondiente sobre las acciones del visitante de la web, y permite el acceso a la base de datos MySQL. El resultado es devuelto a Apache y este se muestra finalmente en el navegador web del visitante.

El lenguaje de programación PHP es uno de los más extendidos para el desarrollo de páginas web. La ventaja de utilizar PHP para el desarrollo de páginas web es que nos permite crear páginas web dinámicas, es decir, que se generan cuando un usuario visita la página.

MySQL es un sistema de gestión de bases de datos relacional desarrollado bajo licencia dual: Licencia pública general/Licencia comercial por Oracle Corporation y está considerada como la base datos de código abierto más popular del mundo, y una de las más populares en general junto a Oracle y Microsoft SQL Server, sobre todo para entornos de desarrollo web.

La alternativa libre es mariaDB: https://mariadb.org/

Este proyecto monta un pequeño servidor web Apache con lo que podrías por ejemplo alojar tu propia página web entre otras cosas. Además, si despliegas alrededor de tu casa, por ejemplo, varios sensores y actuadores (temperatura, humedad, luces, etc…) comandados por Arduino, podrías utilizar la Raspberry Pi 3como centro de envío y recepción de datos a través de su red. Y por supuesto utilizar la página Web para mostrar y controlar los datos a través de Internet.

Instrucciones para su instalación:

#Update system

  • sudo apt-get update
  • sudo apt-get upgrade

#Install Apache2

  • sudo apt-get install apache2

Comprobar que accedemos entrando a la IP de la Raspberry Pi desde un navegador

La página web por defecto está en /var/www/html

Crear un fichero prueba.html en el directorio /var/www/html que contenga el texto: “HOLA MUNDO”

Para comprobar que funciona entrar desde un navegador a la dirección: http://ip_raspberry/prueba.html y ver que aparece el texto “HOLA MUNDO”

También podemos comprobar que funciona conectando un Arduino a la red de la Raspberry Pi y cargar este sketch: https://github.com/jecrespo/Curso-IoT-Open-Source/blob/master/Conecta_Raspberry/Conecta_Raspberry.ino

#Install PHP

  • sudo apt-get install php libapache2-mod-php

La versión que se instala es la 7.

Para comprobar el funcionamiento crear un fichero llamado info.php y en su interior el código: <?php phpinfo(); ?>

Luego en un navegador ir a http://IP-raspberry/info.php

#Install MySQL

  • sudo apt-get install mysql-server php-mysql
  • sudo mysql_secure_installation
  • sudo service apache2 restart

Durante el proceso de instalación se pedirá el password de root de MySQL, poner el mismo que tiene el usuario pi de la Raspberry Pi y poner a Yes todas las opciones de mysql_secure_installation

Estos comando instalan una BBDD MariaDB

Para comprobar que todo funciona ejecutar sudo mysql -u root -p y poner la contraseña, saldrá:

Welcome to the MariaDB monitor.  Commands end with ; or \g.
Your MariaDB connection id is 61
Server version: 10.1.23-MariaDB-9+deb9u1 Raspbian 9.0
Copyright (c) 2000, 2017, Oracle, MariaDB Corporation Ab and others.
Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the current input statement.

#Install PhpMyAdmin

  • sudo apt-get install phpmyadmin

Durante el proceso pide la contraseña del usuario phpmyadmin de MySQL y el servidor a instalar el apache y poner yes en dbconfig-common

phpMyAdmin es una herramienta escrita en PHP con la intención de manejar la administración de MySQL a través de páginas web, utilizando Internet. Actualmente puede crear y eliminar Bases de Datos, crear, eliminar y alterar tablas, borrar, editar y añadir campos, ejecutar cualquier sentencia SQL, administrar claves en campos, administrar privilegios, exportar datos en varios formatos y está disponible en 72 idiomas. Se encuentra disponible bajo la licencia GPL Versión 2.

Para probar que funciona ver en un navegador: http://IP-raspberry/phpmyadmin con el usuario phpmyadmin y la contraseña usada.

El usuario phpmyadmin no tiene privilegios. Para crear un usuario “pi” con privilegios ejecutar:

  • sudo mysql -u root -p
  • CREATE USER ‘pi’@’localhost’ IDENTIFIED BY ‘tu_contrasena‘;
  • GRANT ALL PRIVILEGES ON * . * TO ‘pi’@’localhost’;
  • FLUSH PRIVILEGES;

#Install servidor ftp (VSFTPD)

  • sudo apt-get install vsftpd

Una vez instalado, configurar con: sudo nano /etc/vsftpd.conf

Comentar estas dos opciones:

#local_enable=YES
#ssl_enable=NO

Y añadir al final del fichero:

# CUSTOM
ssl_enable=YES
local_enable=YES
chroot_local_user=YES
local_root=/var/www
user_sub_token=pi
write_enable=YES
local_umask=002
allow_writeable_chroot=YES
ftpd_banner=Welcome to my Raspberry Pi FTP service.

También necesitamos añadir el usuario pi al grupo www-data, dar la propiedad de la carpeta /var/www al usuario y al grupo www-data, cambiar la carpeta de inicio del usuario pi a la misma, y aflojar algunos permisos en la carpeta /var/www:

  • sudo usermod -a -G www-data pi
  • sudo usermod -m -d /var/www pi
  • sudo chown -R www-data:www-data /var/www
  • sudo chmod -R 775 /var/www

Y reiniciar el servicio: sudo service vsftpd restart

Para comprobar que funciona usar un cliente ftp con https://filezilla-project.org/ y hacer una conexión con la siguiente configuración:

  • Host – 192.xxx.x.xxx (IP address)
  • Port – 21
  • Protocol – FTP (File Transfer Protocol)
  • Encryption – Use explicit FTP over TLS if available
  • Logon Type – Normal (username & password)
  • Username – pi
  • Password – [enter password]

Más información:

Y si quisieramos instalar un wordpress: https://www.raspberrypi.org/learning/lamp-web-server-with-wordpress/

Con esto ya tenemos listo un servidor para recibir conexiones de arduino y guardar datos y mostrarlos

Recordar cada vez que se haga una modificación grande en Raspberry Pi hacer una copia de seguridad de la tarjeta SD con Win32DiskImager.

Descarga https://sourceforge.net/projects/win32diskimager/

Escribir el nombre de la imagen en la ruta donde los guardemos.

Y luego pulsar read. Una vez hecho esto, esperar a que el proceso finalice.

Probar LAMP con Arduino

Para probar el servidor LAMP que acabamos de instalar en nuestra Raspberry Pi vamos a usar Arduino y mandar datos de luminosidad de la sala usando un LDR.

Una fotorresistencia o LDR (por sus siglas en inglés “light-dependent resistor”) es un componente electrónico cuya resistencia varía en función de la luz.

Se trata de un sensor que actúa como una resistencia variable en función de la luz que capta. A mayor intensidad de luz, menor resistencia: el sensor ofrece una resistencia de 1M ohm en la oscuridad, alrededor de 10k ohm en exposición de luz ambiente, hasta menos de 1k ohm expuesto a la luz del sol. Aunque estos valores pueden depender del modelo de LDR.

El LDR actúa como una resistencia variable. Para conocer la cantidad de luz que el sensor capta en cierto ambiente, necesitamos medir la tensión de salida del mismo. Para ello utilizaremos un divisor de tensión, colocando el punto de lectura para Vout entre ambas resistencias. De esta forma:

Dónde Vout es el voltaje leído por el PIN analógico del Arduino y será convertido a un valor digital, Vin es el voltaje de entrada (5v), R2 será el valor de la resistencia fija colocada (10k ohm generalmente) y R1 es el valor resistivo del sensor LDR. A medida que el valor del sensor LDR varía, obtendremos una fracción mayor o menor del voltaje de entrada Vin.

Instalación:

Más información https://www.luisllamas.es/medir-nivel-luz-con-arduino-y-fotoresistencia-ldr/

Crear una base de datos llamada “DatosArduino” con una tabla llamada “luminosidad” que tenga 4 campos: “id” auto incremental y sea el campo clave, “fecha” de  tipo timestamp y que se actualice al actualizar, un campo “arduino” de tipo entero y un campo “IntensidadLuminosa” que sea de tipo entero.

O con la query:

 

CREATE TABLE `luminosidad` (
 `id` int(11) NOT NULL,
 `fecha` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00' ON UPDATE CURRENT_TIMESTAMP,
 `arduino` int(11) NOT NULL,
 `IntensidadLuminosa` int(11) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

ALTER TABLE `luminosidad`
 ADD PRIMARY KEY (`id`);

ALTER TABLE `luminosidad`
 MODIFY `id` int(11) NOT NULL AUTO_INCREMENT;

Subir por FTP seguro los ficheros Graba_GET.php y Graba_POST.php a Raspberry Pi al directorio /var/www/html

Ejecutar en Arduino estos sketches para GET o POST para mandar cada 5 segundos el dato de luminosidad:

Ver en la web de phpmyadmin los datos que se están subiendo y descargar en formato csv los datos guardados en unos minutos.

NOTA: Para ver los errores de PHP activar en /etc/php/7.0/apache2/php.ini la línea:

  • Development Value: E_ALL

Instalar Webmin

Webmin es una herramienta de configuración de sistemas accesible vía web para sistemas Unix, como GNU/Linux y OpenSolaris. Con él se pueden configurar aspectos internos de muchos sistemas operativos, como usuarios, cuotas de espacio, servicios, archivos de configuración, apagado del equipo, etcétera, así como modificar y controlar muchas aplicaciones libres, como el servidor web Apache, PHP, MySQL, DNS, Samba, DHCP, entre otros.

Web: http://www.webmin.com/

Instalación:

Es posible que haya que instalar algunas dependencias con:

  • sudo apt-get install perl libnet-ssleay-perl openssl libauthen-pam-perl libpam-runtime libio-pty-perl apt-show-versions python

Para comprobar que se ha instalado acceder desde un navegador a https://ip_address:10000

Más información:

Instalar Mosquitto en Raspberry Pi

Mosquitto está disponible en el repositorio principal de Raspberry Pi. También hay repositorios Debian proporcionados por el proyecto mosquitto, tal y como se describe en  https://mosquitto.org/blog/2013/01/mosquitto-debian-repository/

Lo primero es descargar la signing key o clave de firma utilizando el comando wget. Este comando descarga el fichero indicado como parámetro en el directorio en el que te encuentras.

Añadimos la clave para a una lista para autenticar el paquete que vamos a descargar más tarde.

  • sudo apt-key add mosquitto-repo.gpg.key

Después descargamos la lista de repositorios de Mosquitto con wget en la carpeta adecuada.

Actualizamos la lista de paquetes disponibles y sus versiones

  • sudo apt-get update

Y finalmente instalamos Mosquitto y los clientes

  • sudo apt-get install mosquitto
  • sudo apt-get install mosquitto-clients

Si va a utilizar MQTTT en un proyecto de Python, tendrá que instalar paho-mqtt, que reemplaza al antiguo módulo de Mosquitto Python. Si python-pip no está instalado tendrá que instalarlo primero:

  • sudo apt-get install python-pip
  • sudo pip install paho-mqtt

Más información:

Configurar mosquito

La configuración de mosquitto está el fichero /etc/mosquitto/mosquitto.conf. Recordar hacer copia del fichero antes de hacer alguna modificación

Para añadir todos los mensajes de log en el fichero de log añadir las líneas:

# Save all log in file
log_dest file /var/log/mosquitto/mosquitto.log
log_type all
log_timestamp true

Para más información sobre las opciones del fichero mosquitto.conf ver /usr/share/doc/mosquitto/examples/mosquitto.conf

Para reiniciar el servicio de mosquito usar:

  • sudo systemctl restart mosquitto

En Linux puede recargar los archivos de configuración sin reiniciar el broker enviando la señal HUP de la siguiente manera:

  • kill -HUP PID # where PID is the process ID

Más información:

Comprobar Funcionamiento de Mosquitto

El último paso es probar nuestra instalación. Vamos a usar dos terminales. Uno se suscribirá al tema “test-mosquitto”, y el otro publicará un mensaje sobre este tema. La prueba tendrá éxito si el mensaje enviado por el editor se registra en el terminal de abonado.

Abrir un terminal en el ordenador con PuTTY y para suscribirse al topic “test-mosquitto” poner el comando:

  • mosquitto_sub -d -t ‘test-mosquitto’ (d = debug mode, t = topic)

Las opciones del comando mosquitto_sub son: https://mosquitto.org/man/mosquitto_sub-1.html

Si quisiéramos conectarnos a otro mosquitto y no el de nuestra raspberry usar:

  • mosquitto_sub -d -h IP_BROKER -t ‘test-mosquitto’ (d = debug mode, t = topic, h = host)

Abrir otro terminal y para publicar en el topic “test-mosquitto” poner el comando:

  • mosquitto_pub -d -t ‘test-mosquitto’ -m ‘This is a test message’

Y recibiremos el mensaje en la consola donde nos hemos suscrito:

Probar a suscribirse o publicar a otros mosquitto. También puedes hacerlo instalando el cliente MQTT.fx de: https://mqttfx.jensd.de/

Más información:

Securizar Mosquitto

Tenemos un servidor Mosquitto instalado y funcionando, pero cualquiera que pueda acceder al puerto 1883 de nuestra Raspberry Pi o servidor podrá publicar y suscribirse a topics y además los mensajes no están cifrados.

El objetivo es configurar un broker MQTT con autentificación para securizar un poco el acceso al mismo de forma que podamos exponerlo en un servidor público y aún así tengamos zonas privadas.

Vamos a configurar Mosquitto para que use contraseñas. Mosquitto incluye una utilidad para generar un archivo de contraseña especial llamado mosquitto_passwd. Este comando le pedirá que introduzca una contraseña para el nombre de usuario especificado y coloque los resultados en /etc/mosquitto/passwd. Ejecutar este comando y poner la contraseña.

  • sudo mosquitto_passwd -c /etc/mosquitto/passwd curso_iot

Ahora abriremos un nuevo archivo de configuración para Mosquitto y le diremos que use este archivo de contraseñas para requerir inicios de sesión para todas las conexiones:

  • sudo nano /etc/mosquitto/conf.d/default.conf

Y escribir en el fichero:

password_file /etc/mosquitto/passwd
allow_anonymous false

allow_anonymous false deshabilitará todas las conexiones no autenticadas, y la línea del archivo password_file le indica a Mosquitto dónde buscar información de usuario y contraseña.

Una vez modificado el fichero reiniciar mosquitto:

  • sudo systemctl restart mosquitto

En el directorio /etc/mosquitto/conf.d se guardan los ficheros de configuración adicionales.

Para publicar y suscribirse con usuario y contraseña usar:

  • mosquitto_pub -d -t “test” -m “hola_mundo” -u “curso_iot” -P “password”
  • mosquitto_sub -d -t “test” -u “curso_iot” -P “password”

Desafortunadamente, estamos enviando contraseñas sin encriptar a través de Internet. Lo arreglaremos añadiendo cifrado SSL a Mosquitto.

Para hacerlo seguir estos tutoriales:

Manejar GPIO Raspberry Pi

Blink Led

Antes de empezar recordar comprobar la posición de los pines porque en caso de error podemos dañar la Raspberry Pi ya que los GPIO no tienen ninguna protección.

  • Cuando conectes cables a los GPIO procura no equivocarte y fíjate bien.
  • Usa cables con recubrimiento del tipo Dupont Macho-hembra por ejemplo, y no acerques cables sin proteger a tus GPIO (Y mucho menos un destornillador) porque puedes hacer un corto con facilidad.

  • Una vez que conectes un cable hembra protegido, vuelve a mirar y asegúrate de que lo has conectado al pin que querías y no al de al lado.
  • Especial cuidado con los pines que uses para sacar 3V o 5V de tu Raspi. No dejes el otro extremo al aire: Asegúrate de conectarlo a algún sitio.
  • NO CONECTES NADA DE 5V si no estás seguro. Tu Raspberry funciona a 3.3V y meterle 5V en un pin puede suponer quemar el procesador central.

Instalar las librerías para el uso de los pines GPIO desde Python, asegurandonos de tener actualizado Raspbian:

  • sudo apt-get update
  • sudo apt-get upgrade
  • sudo apt-get install python-dev
  • sudo apt-get install pyton-rpi.gpio

Tened en cuenta que en esta ocasión vamos a alimentar el LED con 3.3V (Que es lo que proporciona un pin de la Raspi) y que la intensidad que obtendremos será: 3.3 / 1K Ω = 3 mA, que no es mucho para iluminar un LED pero suficiente.

Esquema de GPIO:

Conectamos GND al pin 6 de la Raspberry y vamos a usar el pin 12 (GPIO 18) como control del encendido mediante una resistencia intermedia. El esquema de conexión es:

Abrir el IDLE de Python 3 para empezar nuestro programa:

Y copiar código:

 
import RPi.GPIO as gpio

import time

gpio.setmode(gpio.BOARD)
gpio.setup(12, gpio.OUT)

for  x in range ( 0, 10):

   gpio.output(12, True)
   time.sleep(0.5)

   gpio.output(12, False)
   time.sleep(0.5)

print "Ejecución finalizada"

Guardar el fichero con el nombre blink.py en /home/pi y ejecutarlo pulsando F5

Más información:

Anuncios

Entender Arduino

Arduino no solo es una placa azul muy popular con la que hacer semáforos, encender leds o usado en las impresoras 3D. Arduino va mucho más allá y vamos a verlo en este capítulo.

Primer Arduino:

Ya hemos visto anteriormente qué es Arduino: https://aprendiendoarduino.wordpress.com/2018/04/02/que-es-arduino-7/

A modo de resumen los tres componentes de Arduino son:

Arduino = HW + SW + Comunidad

Arduino simplifica el trabajo con microcontroladores y ofrece las siguientes ventajas: barato, multiplataforma, entorno de programación sencillo, software libre y extensible mediante librerías en C++, hardware libre y extensible.

Al trabajar con Arduino, se manejan conceptos de diferentes tecnologías que a priori no tienen nada que ver entre ellos pero que los unifica: electronica digital y analogica, electricidad, programación, microcontroladores, tratamiento de señales, protocolos de comunicación, arquitectura de procesadores, mecánica, motores, diseño de placas electrónicas etc…

Diez razones para usar Arduino: http://www.modulo0tutoriales.com/10-razones-para-usar-arduino/

Mitos sobre Arduino que todo el mundo cree y no son verdad: https://www.baldengineer.com/5-arduino-myths.html

HW Arduino

El HW de Arduino es básicamente una placa con un microcontrolador. Un microcontrolador (abreviado µC, UC o MCU) es un circuito integrado programable, capaz de ejecutar las órdenes grabadas en su memoria. Está compuesto de varios bloques funcionales, los cuales cumplen una tarea específica. Un microcontrolador incluye en su interior las tres principales unidades funcionales de una computadora: unidad central de procesamiento, memoria y periféricos de entrada/salida.

Características de un Microcontrolador:

  • Velocidad del reloj u oscilador
  • Tamaño de palabra
  • Memoria: SRAM, Flash, EEPROM, ROM, etc..
  • I/O Digitales
  • Entradas Analógicas
  • Salidas analógicas (PWM)
  • DAC (Digital to Analog Converter)
  • ADC (Analog to Digital Converter)
  • Buses
  • UART
  • Otras comunicaciones.

El hardware de Arduino usa microcontroladores generalmente Atmel AVR. Los microcontroladores más usados en las plataformas Arduino son el Atmega168, Atmega328, Atmega1280, ATmega8 por su sencillez, pero se está ampliando a microcontroladores Atmel con arquitectura ARM como el Atmel SAMD21 o los ST STM32, y también Intel.

Arduino dispone de una amplia variedad de placas y shields para usar dependiendo de nuestras necesidades.

Placas Arduino: https://aprendiendoarduino.wordpress.com/2017/06/19/placas-arduino-2/

Un shield es una placa compatible que se puede colocar en la parte superior de los arduinos y permite extender las capacidades del arduino.

Shields Arduino: https://aprendiendoarduino.wordpress.com/2017/06/20/shields-arduino-3/

HW Compatible Arduino

Además del HW oficial de Arduino tenemos infinidad de placas compatibles con Arduino.

Dentro del HW compatible con Arduino podemos distinguir tres tipos:

Listados de placas Arduino y compatibles:

Dentro del entorno Arduino, podemos encontrar placas basadas en el microcontrolador ESP8266 con wifi integrado y pila de protocolos TCP/IP que no sigue el factor de forma de Arduino. De este microcontrolador han salido muchas placas como las wemos https://www.wemos.cc/

Resultado de imagen de wemos.jpg

Placas de otros fabricantes de microcontroladores como Microchip o Mediatek con sus modelos ChipKit o LinkIt.

Documentación de la placa linkit one:

SW Arduino

El software de Arduino es un IDE, entorno de desarrollo integrado (siglas en inglés de Integrated Development Environment). Es un programa informático compuesto por un conjunto de herramientas de programación.

El IDE de Arduino es un entorno de programación que ha sido empaquetado como un programa de aplicación; es decir, consiste en un editor de código, un compilador, un depurador y un constructor de interfaz gráfica (GUI). Además incorpora las herramientas para cargar el programa ya compilado en la memoria flash del hardware.

Es destacable desde la aparición de la versión 1.6.2 la incorporación de la gestión de librerías y la gestión de placas muy mejoradas respecto a la versión anterior y los avisos de actualización de versiones de librerías y cores.

Todos lo cambios en la versiones pueden verse en: https://www.arduino.cc/en/Main/ReleaseNotes

Código fuente del IDE de Arduino está disponible en: https://github.com/arduino/Arduino/  y las instrucciones para construir el IDE desde código fuente pueden verse en: https://github.com/arduino/Arduino/wiki/Building-Arduino

Podemos también ver los problemas/bugs detectados de la versión actual y hacer un seguimiento de ellos: https://github.com/arduino/Arduino/issues y en http://forum.arduino.cc/index.php?board=2.0

En principio el IDE de arduino solo tenía soporte para las placas Arduino y los clones o forks con los mismos microcontroladores que los Arduinos oficiales. Desde la versión 1.6.2 del IDE de arduino.cc y gracias al gestor de placas, podemos añadir soporte a otros microcontroladores y placas al IDE de Arduino, como al ESP8266.

Listado de URLs para soporte de tarjetas no oficiales: https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls

Arduino.cc tiene disponible un IDE on-line dentro del entorno Arduino Create https://create.arduino.cc/ que es una plataforma on-line integrada que permite escribir código, acceder a contenido, configurar placas y compartir proyectos, muy enfocado al Internet de las Cosas (IoT).

También existen otros IDEs alternativos como Atmel Studio http://www.atmel.com/Microsite/atmel-studio/ para microntroladores Atmel.

El software hecho para Arduino con el IDE es portable, es decir, el mismo firmware que hemos hecho para un Arduino/Microcontrolador, sirve para otras placas Arduino u otras placas compatibles Arduino como el ESP8266.

Comunidad Arduino

Un factor del éxito de Arduino ha sido la comunidad que está apoyando este proyecto y que día a día publica nuevo contenido, divulga y responde a las dudas.

En Internet hay disponible todo tipo de cursos, tutoriales, herramientas de consulta, proyectos, etc… que ayudan a que se pueda usar Arduino con facilidad.

El primer sitio donde empezar para trabajar con Arduino es http://www.arduino.cc/ y el segundo sitio el playground de Arduino http://playground.arduino.cc/

Arduino playground es un wiki donde todos los usuarios de Arduino pueden contribuir. Es el lugar donde publicar y compartir código, diagrama de circuitos, tutoriales, trucos, cursos, etc.. y sobretodo el lugar donde buscar cuando tengamos dudas, un problema, una librería adecuada para nuestro proyecto, etc… Esa la base de datos de conocimiento por excelencia de Arduino.

Arduino playground: http://playground.arduino.cc/

Algunos apartados importantes en playground.

Otro lugar donde la comunidad colabora, se puede buscar información y preguntar las dudas que tengamos, es el foro Arduino: http://forum.arduino.cc/.

También existen lugares no oficiales de Arduino donde resolver nuestras dudas:

Arduino en las redes sociales:

Otro lugar de encuentro de la comunidad son diversos portales donde se publican proyectos con Arduino:

Por último, también hay espacios locales para la comunidad, son los llamados hacklabs hackerspace, makerspace, etc.. que aunque hay ciertas diferencias entre unos y otros, se trata de un sitio físico donde gente con intereses en ciencia, nuevas tecnologías, y artes digitales o electrónicas se puede conocer, socializar y colaborar. Puede ser visto como un laboratorio de comunidad abierta, un espacio donde gente de diversos trasfondos puede unirse. Pone al alcance de aficionados y estudiantes de diferentes niveles la infraestructura y ambiente necesarios para desarrollar sus proyectos tecnológicos.

Hacklab: https://es.wikipedia.org/wiki/Hacklab

Mejores prácticas Hackerspaces: https://elplatt.com/new-hackerspace-design-patterns

Listado de Hackerspaces: https://hackerspaces.org/wiki/List_of_ALL_Hacker_Spaces

También hay otro espacio local algo diferente que son los fablabs: es un espacio de producción de objetos físicos a escala personal o local que agrupa máquinas controladas por ordenadores.

Fablab: https://es.wikipedia.org/wiki/Fab_lab

Qué es un fablab: http://fab.cba.mit.edu/about/charter/

Este podcast explica las diferencias entre estos espacios: http://make.cesargarciasaez.com/2016/02/01/la-hora-maker-010-fablabs-makespaces-hackerspaces-y-hacklabs/

Movimiento maker: https://en.wikipedia.org/wiki/Maker_culture

Más información sobre la comunidad, makerspaces y fablabs, ver los artículos:

Filosofía Arduino

Por último para entender bien lo que es Arduino, es recomendable ver el documental de Arduino de unos 30 minutos de duración. Arduino the Documentary: http://blog.arduino.cc/2011/01/07/arduino-the-documentary-now-online/

IoT Manifesto: https://create.arduino.cc/iot/manifesto/

We believe that the best way to grow this environment is to develop open source platforms and protocols to propose as an alternative to the myriad of proprietary hardware and software platforms each one of the big players are developing.
We believe in creating tools that make these technologies understandable to the most diverse set of people as possible, this is the only way to make sure innovation benefits most of humanity.
We propose that connected devices should be: Open, Sustainable and Fair.

We foresee a world with billions of connected smart objects. These smart objects will be composed and orchestrated, thus making the Internet of Things a reality. The IoT will be the eyes, noses, arms, legs, hands of a new, extended, cyber body. The nervous system of such a body will be the Internet, allowing the interaction with a distributed intelligence made of hardware processors and human minds, behaviors, software procedures, and services, shared in the Cloud.

Qué es Arduino

Arduino es un dispositivo programable como es un ordenador, un móvil, un tablet o un PLC, es decir, se puede cambiar el comportamiento o la funcionalidad del dispositivo mediante unas órdenes en un lenguaje concreto que es capaz de ser interpretado por el dispositivo y seguir esas órdenes con el fin de realizar una tarea automática o resolver un problema.

En el caso de los ordenadores, móviles o tablets, la entrada de los datos y la interacción con las personas es a través del teclado, ratón, pantalla táctil o incluso la posición GPS o la inclinación del móvil y la salida de los resultados o visualización por las personas es a través de la pantalla. Sin embargo un PLC/Autómata o un Arduino, la interacción con el humano o con el entorno no está tan limitada como en el caso de un Ordenador o un tablet, los interfaces de comunicación (entrada/salida) son ilimitados y consisten en ciertos componentes hardware (transductores) que convierten los cambios de energía producidos por las alteraciones en el medio físico, en señales eléctricas entendibles por las máquinas. Por lo tanto las entradas a estos dispositivos son los sensores y las salidas son los actuadores que convierten las señales eléctricas en magnitudes físicas.

Arduino es un dispositivo programable que nos permite interactuar con el entorno, pudiendo leer la temperatura de una sala, el deslizamiento de una rueda o el ángulo de inclinación de una plataforma y escribir/actuar sobre el encendido de una caldera, los frenos del coche o un motor para nivelar una plataforma.

La computación física se refiere al diseño de objetos y espacios que reaccionan a cambios en el entorno y actúan en este. Se basa en la construcción de dispositivos que incluyen microcontroladores, sensores y actuadores y que pueden tener capacidades de comunicación con la red u otros dispositivos.

Arduino es una plataforma de hardware libre, basada en una placa con un microcontrolador y un entorno de desarrollo, diseñada para facilitar el uso de la electrónica en proyectos multidisciplinares.

Hardware Libre: http://es.wikipedia.org/wiki/Hardware_libre

Arduino es una plataforma abierta que facilita la programación de un microcontrolador. Los microcontroladores nos rodean en nuestra vida diaria, usan los sensores para escuchar el mundo físico y los actuadores para interactuar con el mundo físico. Los microcontroladores leen sobre los sensores y escriben sobre los actuadores.

En palabras de David Cuartielles: “Actualmente todo lo que nos rodea en la vida es digital (entendido como hacer operaciones matemáticas complejas y comunicar con otros dispositivos), cualquier cosa lleva un microchip, desde el microondas a un coche. Arduino lleva uno de esos microchips y te permite aprender a manejar como funciona el mundo en el que vivimos hoy en día y cómo interactúa el hombre con el mundo digital. Arduino es la puerta hacia tomar control de cómo funcionan las cosas actualmente y en el futuro. Así que encender el ordenador y empezar a programar.

Arduino no solo proporciona las placas (Hardware), sino que nos proporciona un software consistente en un entorno de desarrollo (IDE), un lenguaje de programación simplificado para el HW y el bootloader ejecutado en la placa. La principal característica del software (IDE) y del lenguaje de programación es su sencillez y facilidad de uso.

Arduino promete ser una forma sencilla de realizar proyectos interactivos para cualquier persona. Para alguien que quiere hacer un proyecto, el proceso pasa por descargarnos e instalar el IDE buscar un poco por internet y simplemente hacer “corta y pega” del código que nos interese y cargarlo en nuestro HW. Luego hacer los cableados correspondientes con los periféricos y ya tenemos interaccionando el software con el Hardware. Todo ello con una inversión económica mínima: el coste del Arduino y los periféricos.

Arduino es una tecnología que tiene una rápida curva de aprendizaje con básicos conocimientos de programación y electrónica, que permite desarrollar proyectos en el ámbito de las Smart Cities, el Internet de las cosas, dispositivos wearables, salud, ocio, educación, robótica, etc…

Definición de Arduino en la web oficial: https://www.arduino.cc/en/Guide/Introduction

Otras definiciones de Arduino:

Que es arduino en un minuto (video): http://learn.onemonth.com/what-is-arduino

Hay otro factor importante en el éxito de Arduino, es la comunidad que apoya todo este desarrollo, comparte conocimiento, elabora librerías para facilitar el uso de Arduino y publica sus proyectos para que puedan ser replicados, mejorados o ser base para otro proyecto relacionado.

En resumen:

Arduino = HW + SW + Comunidad

¿Para qué sirve Arduino?

Arduino se puede utilizar para desarrollar elementos autónomos, conectándose a dispositivos e interactuar tanto con el hardware como con el software. Nos sirve tanto para controlar un elemento, pongamos por ejemplo un motor que nos suba o baje una persiana basada en la luz existente es una habitación, gracias a un sensor de luz conectado al Arduino, o bien para leer la información de una fuente, como puede ser un teclado, y convertir la información en una acción como puede ser encender una luz o mostrar por un display lo tecleado.

Con Arduino  es posible automatizar cualquier cosa para hacer agentes autónomos (si queréis llamarles Robots también). Controlar luces y dispositivos, o cualquier otra cosa que se pueda imaginar, es posible optar por una solución basada en Arduino. Especialmente en desarrollos de dispositivos conectados a Internet, Arduino es una solución muy buena.

Qué puede hacer Arduino? https://aprendiendoarduino.wordpress.com/2016/06/26/que-puede-hacer-arduino/

Entornos de aplicación de Arduino? https://aprendiendoarduino.wordpress.com/2016/06/26/entornos-de-aplicacion-arduino/

Qué es Arduino

Arduino es una plataforma de hardware libre, basada en una placa con un microcontrolador y un entorno de desarrollo, diseñada para facilitar el uso de la electrónica en proyectos multidisciplinares.

Hardware Libre: http://es.wikipedia.org/wiki/Hardware_libre

Arduino es una plataforma abierta que facilita la programación de un microcontrolador. Los microcontroladores nos rodean en nuestra vida diaria, usan los sensores para escuchar el mundo físico y los actuadores para interactuar con el mundo físico. Los microcontroladores leen sobre los sensores y escriben sobre los actuadores.

En palabras de David Cuartielles: “Actualmente todo lo que nos rodea en la vida es digital (entendido como hacer operaciones matemáticas complejas y comunicar con otros dispositivos), cualquier cosa lleva un microchip, desde el microondas a un coche. Arduino lleva uno de esos microchips y te permite aprender a manejar como funciona el mundo en el que vivimos hoy en día y cómo interactúa el hombre con el mundo digital. Arduino es la puerta hacia tomar control de cómo funcionan las cosas actualmente y en el futuro. Así que encender el ordenador y empezar a programar.

Arduino no solo proporciona las placas (Hardware), sino que nos proporciona un software consistente en un entorno de desarrollo (IDE), un lenguaje de programación simplificado para el HW y el bootloader ejecutado en la placa. La principal característica del software (IDE) y del lenguaje de programación es su sencillez y facilidad de uso.

El software hecho para Arduino es portable, es decir, el mismo firmware que hemos hecho para un Arduino/Microcontrolador, sirve para otras placas Arduino u otras placas compatibles Arduino como el ESP8266.

Arduino promete ser una forma sencilla de realizar proyectos interactivos para cualquier persona. Para alguien que quiere hacer un proyecto, el proceso pasa por descargarnos e instalar el IDE buscar un poco por internet y simplemente hacer “corta y pega” del código que nos interese y cargarlo en nuestro HW. Luego hacer los cableados correspondientes con los periféricos y ya tenemos interaccionando el software con el Hardware. Todo ello con una inversión económica mínima: el coste del Arduino y los periféricos.

Arduino es una tecnología que tiene una rápida curva de aprendizaje con básicos conocimientos de programación y electrónica, que permite desarrollar proyectos en el ámbito de las Smart Cities, el Internet de las cosas, dispositivos wearables, salud, ocio, educación, robótica, etc…

Definición de Arduino en la web oficial: https://www.arduino.cc/en/Guide/Introduction

Otras definiciones de Arduino:

Que es arduino en un minuto (video): http://learn.onemonth.com/what-is-arduino

Hay otro factor importante en el éxito de Arduino, es la comunidad que apoya todo este desarrollo, comparte conocimiento, elabora librerías para facilitar el uso de Arduino y publica sus proyectos para que puedan ser replicados, mejorados o ser base para otro proyecto relacionado.

En resumen:

Arduino = HW + SW + Comunidad

Mitos sobre Arduino que todo el mundo cree y no son verdad: https://www.baldengineer.com/5-arduino-myths.html

Primer Arduino:

Arduino simplifica el trabajo con microcontroladores y ofrece las siguientes ventajas: barato, multiplataforma, entorno de programación sencillo, software libre y extensible mediante librerías en C++, hardware libre y extensible.

Al trabajar con Arduino, se manejan conceptos de diferentes tecnologías que a priori no tienen nada que ver entre ellos pero que los unifica: electronica digital y analogica, electricidad, programación, microcontroladores, tratamiento de señales, protocolos de comunicación, arquitectura de procesadores, mecánica, motores, diseño de placas electrónicas etc…

Diez razones para usar Arduino: http://www.modulo0tutoriales.com/10-razones-para-usar-arduino/

¿Para qué sirve Arduino?

Arduino se puede utilizar para desarrollar elementos autónomos, conectándose a dispositivos e interactuar tanto con el hardware como con el software. Nos sirve tanto para controlar un elemento, pongamos por ejemplo un motor que nos suba o baje una persiana basada en la luz existente es una habitación, gracias a un sensor de luz conectado al Arduino, o bien para leer la información de una fuente, como puede ser un teclado, y convertir la información en una acción como puede ser encender una luz o mostrar por un display lo tecleado.

Con Arduino  es posible automatizar cualquier cosa para hacer agentes autónomos (si queréis llamarles Robots también). Controlar luces y dispositivos, o cualquier otra cosa que se pueda imaginar, es posible optar por una solución basada en Arduino. Especialmente en desarrollos de dispositivos conectados a Internet, Arduino es una solución muy buena.

Qué puede hacer Arduino? https://aprendiendoarduino.wordpress.com/2016/06/26/que-puede-hacer-arduino/

Entornos de aplicación de Arduino? https://aprendiendoarduino.wordpress.com/2016/06/26/entornos-de-aplicacion-arduino/

HW Arduino

El HW de Arduino es básicamente una placa con un microcontrolador. Un microcontrolador (abreviado µC, UC o MCU) es un circuito integrado programable, capaz de ejecutar las órdenes grabadas en su memoria. Está compuesto de varios bloques funcionales, los cuales cumplen una tarea específica. Un microcontrolador incluye en su interior las tres principales unidades funcionales de una computadora: unidad central de procesamiento, memoria y periféricos de entrada/salida.

Características de un Microcontrolador:

  • Velocidad del reloj u oscilador
  • Tamaño de palabra
  • Memoria: SRAM, Flash, EEPROM, ROM, etc..
  • I/O Digitales
  • Entradas Analógicas
  • Salidas analógicas (PWM)
  • DAC (Digital to Analog Converter)
  • ADC (Analog to Digital Converter)
  • Buses
  • UART
  • Otras comunicaciones.

El hardware de Arduino usa microcontroladores generalmente Atmel AVR. Los microcontroladores más usados en las plataformas Arduino son el Atmega168, Atmega328, Atmega1280, ATmega8 por su sencillez, pero se está ampliando a microcontroladores Atmel con arquitectura ARM como el Atmel SAMD21 o los ST STM32, y también Intel.

Arduino dispone de una amplia variedad de placas y shields para usar dependiendo de nuestras necesidades.

Placas Arduino: https://aprendiendoarduino.wordpress.com/2017/06/19/placas-arduino-2/

Un shield es una placa compatible que se puede colocar en la parte superior de los arduinos y permite extender las capacidades del arduino.

Shields Arduino: https://aprendiendoarduino.wordpress.com/2017/06/20/shields-arduino-3/

HW Compatible Arduino

Además del HW oficial de Arduino tenemos infinidad de placas compatibles con Arduino.

Dentro del HW compatible con Arduino podemos distinguir tres tipos:

Listados de placas Arduino y compatibles:

Dentro del entorno Arduino, podemos encontrar placas basadas en el microcontrolador ESP8266 con wifi integrado y pila de protocolos TCP/IP que no sigue el factor de forma de Arduino. De este microcontrolador han salido muchas placas como las wemos https://www.wemos.cc/

Placas de otros fabricantes de microcontroladores como Microchip o Mediatek con sus modelos ChipKit o LinkIt.

Documentación de la placa linkit one:

SW Arduino

El software de Arduino es un IDE, entorno de desarrollo integrado (siglas en inglés de Integrated Development Environment). Es un programa informático compuesto por un conjunto de herramientas de programación.

El IDE de Arduino es un entorno de programación que ha sido empaquetado como un programa de aplicación; es decir, consiste en un editor de código, un compilador, un depurador y un constructor de interfaz gráfica (GUI). Además incorpora las herramientas para cargar el programa ya compilado en la memoria flash del hardware.

Es destacable desde la aparición de la versión 1.6.2 la incorporación de la gestión de librerías y la gestión de placas muy mejoradas respecto a la versión anterior y los avisos de actualización de versiones de librerías y cores.

Todos lo cambios en la versiones pueden verse en: https://www.arduino.cc/en/Main/ReleaseNotes

Código fuente del IDE de Arduino está disponible en: https://github.com/arduino/Arduino/  y las instrucciones para construir el IDE desde código fuente pueden verse en: https://github.com/arduino/Arduino/wiki/Building-Arduino

Podemos también ver los problemas/bugs detectados de la versión actual y hacer un seguimiento de ellos: https://github.com/arduino/Arduino/issues y en http://forum.arduino.cc/index.php?board=2.0

En principio el IDE de arduino solo tenía soporte para las placas Arduino y los clones o forks con los mismos microcontroladores que los Arduinos oficiales. Desde la versión 1.6.2 del IDE de arduino.cc y gracias al gestor de placas, podemos añadir soporte a otros microcontroladores y placas al IDE de Arduino, como al ESP8266.

Listado de URLs para soporte de tarjetas no oficiales: https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls

Arduino.cc tiene disponible un IDE on-line dentro del entorno Arduino Create https://create.arduino.cc/ que es una plataforma on-line integrada que permite escribir código, acceder a contenido, configurar placas y compartir proyectos, muy enfocado al Internet de las Cosas (IoT).

También existen otros IDEs alternativos como Atmel Studio http://www.atmel.com/Microsite/atmel-studio/ para microntroladores Atmel.

Comunidad Arduino

Un factor del éxito de Arduino ha sido la comunidad que está apoyando este proyecto y que día a día publica nuevo contenido, divulga y responde a las dudas.

En Internet hay disponible todo tipo de cursos, tutoriales, herramientas de consulta, proyectos, etc… que ayudan a que se pueda usar Arduino con facilidad.

El primer sitio donde empezar para trabajar con Arduino es http://www.arduino.cc/ y el segundo sitio el playground de Arduino http://playground.arduino.cc/

Arduino playground es un wiki donde todos los usuarios de Arduino pueden contribuir. Es el lugar donde publicar y compartir código, diagrama de circuitos, tutoriales, trucos, cursos, etc.. y sobretodo el lugar donde buscar cuando tengamos dudas, un problema, una librería adecuada para nuestro proyecto, etc… Esa la base de datos de conocimiento por excelencia de Arduino.

Arduino playground: http://playground.arduino.cc/

Algunos apartados importantes en playground.

Otro lugar donde la comunidad colabora, se puede buscar información y preguntar las dudas que tengamos, es el foro Arduino: http://forum.arduino.cc/.

También existen lugares no oficiales de Arduino donde resolver nuestras dudas:

Arduino en las redes sociales:

Otro lugar de encuentro de la comunidad son diversos portales donde se publican proyectos con Arduino:

Por último, también hay espacios locales para la comunidad, son los llamados hacklabs hackerspace, makerspace, etc.. que aunque hay ciertas diferencias entre unos y otros, se trata de un sitio físico donde gente con intereses en ciencia, nuevas tecnologías, y artes digitales o electrónicas se puede conocer, socializar y colaborar. Puede ser visto como un laboratorio de comunidad abierta, un espacio donde gente de diversos trasfondos puede unirse. Pone al alcance de aficionados y estudiantes de diferentes niveles la infraestructura y ambiente necesarios para desarrollar sus proyectos tecnológicos.

Hacklab: https://es.wikipedia.org/wiki/Hacklab

Mejores prácticas Hackerspaces: https://elplatt.com/new-hackerspace-design-patterns

Listado de Hackerspaces: https://hackerspaces.org/wiki/List_of_ALL_Hacker_Spaces

También hay otro espacio local algo diferente que son los fablabs: es un espacio de producción de objetos físicos a escala personal o local que agrupa máquinas controladas por ordenadores.

Fablab: https://es.wikipedia.org/wiki/Fab_lab

Qué es un fablab: http://fab.cba.mit.edu/about/charter/

Este podcast explica las diferencias entre estos espacios: http://make.cesargarciasaez.com/2016/02/01/la-hora-maker-010-fablabs-makespaces-hackerspaces-y-hacklabs/

Movimiento maker: https://en.wikipedia.org/wiki/Maker_culture

Más información sobre la comunidad, makerspaces y fablabs, ver los artículos:

Importancia de Arduino en el mundo Hardware

Arduino y por extensión el hardware libre se ha convertido en un elemento importante no solo en el mundo maker sino también el la industria de fabricación de hardware.

Este enlace hace un estudio del estado de la industria del hardware en 2016. Más empresas están desarrollando productos innovadores y tenemos disponibles mejores herramientas para el prototipado y fabricación. El acceso a esas herramientas y el conocimiento alrededor de ellas es cada vez más universal. De estas herramientas destaca Arduino, Raspberry Pi y las impresoras 3D.

Enlace: http://blog.fictiv.com/posts/2016-state-of-hardware-report

Cabe destacar de este estudio que el 56% de las empresas usan Arduino como herramienta eléctrica de prototipado y el 91% de las empresas usan impresoras 3D como herramienta mecanica de prototipado.

Otra encuesta de hackster.io que muestra la importancia de Arduino: https://blog.arduino.cc/2016/07/06/the-worlds-largest-maker-survey-results-are-out/

Arduino también se está utilizando ampliamente en la docencia y en la investigación. Pero Arduino empezó como herramienta sencilla para artistas y usarlo en sus obras de arte, ejemplo de uso de Arduino en el Arte https://vimeo.com/149774067

¿Es Arduino un Juguete destinado a Makers?

Definitivamente NO, Arduino es una herramienta de prototipado accesible y barata que puede ser usada por profesionales para desarrollar aplicaciones profesionales.

Poner un Arduino en un producto comercial no es recomendable, pero sí usarlo como una herramienta de desarrollo y prototipado.

Además Arduino puede ser una herramienta para desplegar aplicaciones, hacer desarrollos internos o como sistema de monitorización dentro de una empresa de una forma sencilla y económica. Instalar un sistema con Arduino con decenas de sondas de consumo a lo largo de una empresa para detectar puntos de exceso consumo eléctrico y como elemento de eficiencia energética, es sencillo y económico usando por ejemplo un proyecto open source como https://openenergymonitor.org/

Veamos un ejemplo de una empresa riojana. Zapatillas de ciclismo John Luck con medidor de potencia de pedalada.

Presentación en el Eurobike del 2014:

Colaboración con el Centro Tecnológico del Calzado de La Rioja (CTCR): http://esmtb.com/27772/john-luck-se-une-al-centro-tecnologico-del-calzado-de-la-rioja/

Elementos montados que se ven en la imagen:

Campaña en kickstarter de un producto con otro concepto pero con el mismo objetivo: https://www.kickstarter.com/projects/brimbrothers/the-worlds-first-wearable-power-meter-for-cyclists. Más información: http://omicrono.elespanol.com/2016/02/medidor-potencia-en-zapatillas/  

Producto oficial lanzado en 2017:

El producto final ya no es un Arduino lógicamente, pero Arduino ha sido usado para el desarrollo de un producto comercial.

Antes de Arduino

Antes de Arduino, eran necesarios los programadores para cada MCU, lenguaje de programación ensamblador usando las instrucciones propias de la MCU y materiales caros.

Ejemplos:

Una plataforma muy extendida para aprender a programar microcontroladores era Basic Stamp.

Tabla de comparación de los microcontroladres Basic Stamp: https://www.parallax.com/sites/default/files/downloads/BASICStampComparisonChart-0114.pdf

Lenguaje de programación Pbasic: http://en.wikipedia.org/wiki/PBASIC

Guia de incio muy intersante de parallax para inicio con Basic Stamp: http://www.rambal.com/descargas/libros/WAM-v3.0-Spanish-v1.0.pdf

Placas de desarrollo con Basic Stamp: https://www.parallax.com/catalog/microcontrollers/basic-stamp/boards

Ejemplo de domotica con basic stamp: http://www.aprenderobotica.com/m/group/discussion?id=4310109%3ATopic%3A947

Interesante comparación entre Basic stamp y arduino: http://todbot.com/blog/2006/09/25/arduino-the-basic-stamp-killer/

Filosofía Arduino

Por último para entender bien lo que es Arduino, es recomendable ver el documental de Arduino de unos 30 minutos de duración. Arduino the Documentary: http://blog.arduino.cc/2011/01/07/arduino-the-documentary-now-online/

IoT Manifesto: https://create.arduino.cc/iot/manifesto/

We believe that the best way to grow this environment is to develop open source platforms and protocols to propose as an alternative to the myriad of proprietary hardware and software platforms each one of the big players are developing.

We believe in creating tools that make these technologies understandable to the most diverse set of people as possible, this is the only way to make sure innovation benefits most of humanity.

We propose that connected devices should be: Open, Sustainable and Fair.

We foresee a world with billions of connected smart objects. These smart objects will be composed and orchestrated, thus making the Internet of Things a reality. The IoT will be the eyes, noses, arms, legs, hands of a new, extended, cyber body. The nervous system of such a body will be the Internet, allowing the interaction with a distributed intelligence made of hardware processors and human minds, behaviors, software procedures, and services, shared in the Cloud.

Qué es Arduino

Arduino es una plataforma de hardware libre, basada en una placa con un microcontrolador y un entorno de desarrollo, diseñada para facilitar el uso de la electrónica en proyectos multidisciplinares.

Hardware Libre: http://es.wikipedia.org/wiki/Hardware_libre

Por otro lado Arduino nos proporciona un  software consistente en un entorno de desarrollo (IDE) que implementa el lenguaje de programación de arduino y el bootloader ejecutado en la placa. La principal característica del software de programación y del lenguaje de programación es su sencillez y facilidad de uso.

¿Para qué sirve Arduino? Arduino se puede utilizar para desarrollar elementos autónomos, conectándose a dispositivos e interactuar tanto con el hardware como con el software. Nos sirve tanto para controlar un elemento, pongamos por ejemplo un motor que nos suba o baje una persiana basada en la luz existente es una habitación, gracias a un sensor de luz conectado al Arduino, o bien para leer la información de una fuente, como puede ser un teclado, y convertir la información en una acción como puede ser encender una luz y pasar por un display lo tecleado.

Qué puede hacer Arduino? https://aprendiendoarduino.wordpress.com/2016/06/26/que-puede-hacer-arduino/

Entornos de aplicación de Arduino? https://aprendiendoarduino.wordpress.com/2016/06/26/entornos-de-aplicacion-arduino/

Hay otro factor importante en el éxito de Arduino, es la comunidad que apoya todo este desarrollo, comparte conocimiento, elabora librerías para facilitar el uso de Arduino y publica sus proyectos para que puedan ser replicados, mejorados o ser base para otro proyecto relacionado.

En resumen:

Arduino = HW + SW + Comunidad

HW Arduino

El HW de Arduino es básicamente una placa con un microcontrolador. Un microcontrolador (abreviado µC, UC o MCU) es un circuito integrado programable, capaz de ejecutar las órdenes grabadas en su memoria. Está compuesto de varios bloques funcionales, los cuales cumplen una tarea específica. Un microcontrolador incluye en su interior las tres principales unidades funcionales de una computadora: unidad central de procesamiento, memoria y periféricos de entrada/salida.

Características de un Microcontrolador:

  • Velocidad del reloj u oscilador
  • Tamaño de palabra
  • Memoria: SRAM, Flash, EEPROM, ROM, etc..
  • I/O Digitales
  • Entradas Analógicas
  • Salidas analógicas (PWM)
  • DAC (Digital to Analog Converter)
  • ADC (Analog to Digital Converter)
  • Buses
  • UART
  • Otras comunicaciones.

Arduino dispone de una amplia variedad de placas y shields para usar dependiendo de nuestras necesidades.

Placas Arduino: https://aprendiendoarduino.wordpress.com/2017/06/19/placas-arduino-2/

Un shield es una placa compatible que se puede colocar en la parte superior de los arduinos y permite extender las capacidades del arduino.

Shields Arduino: https://aprendiendoarduino.wordpress.com/2017/06/20/shields-arduino-3/

HW Compatible Arduino

Además del HW oficial de Arduino tenemos infinidad de placas compatibles con Arduino. Dentro del HW compatible con Arduino podemos distinguir tres tipos:

Listados de placas Arduino y compatibles:

Dentro del entorno Arduino, podemos encontrar placas basadas en el microcontrolador ESP8266 con wifi integrado y pila de protocolos TCP/IP que no sigue el factor de forma de Arduino. De este microcontrolador han salido muchas placas como las wemos https://www.wemos.cc/

Placas de otros fabricantes de microcontroladores como Microchip o Mediatek con sus modelos ChipKit o LinkIt.

Y la comunidad está trabajando en dar soporte a otros microcontroladores como algunos STM32 de ST Microelectronics.

SW Arduino

El software de Arduino es un IDE, entorno de desarrollo integrado (siglas en inglés de Integrated Development Environment). Es un programa informático compuesto por un conjunto de herramientas de programación.

El IDE de Arduino es un entorno de programación que ha sido empaquetado como un programa de aplicación; es decir, consiste en un editor de código, un compilador, un depurador y un constructor de interfaz gráfica (GUI). Además incorpora las herramientas para cargar el programa ya compilado en la memoria flash del hardware.

Es destacable desde la aparición de la versión 1.6.2 la incorporación de la gestión de librerías y la gestión de placas muy mejoradas respecto a la versión anterior y los avisos de actualización de versiones de librerías y cores.

Todos lo cambios en la versiones pueden verse en: https://www.arduino.cc/en/Main/ReleaseNotes

Código fuente del IDE de Arduino está disponible en: https://github.com/arduino/Arduino/  y las instrucciones para construir el IDE desde código fuente pueden verse en: https://github.com/arduino/Arduino/wiki/Building-Arduino

Podemos también ver los problemas/bugs detectados de la versión actual y hacer un seguimiento de ellos: https://github.com/arduino/Arduino/issues y en http://forum.arduino.cc/index.php?board=2.0

En principio el IDE de arduino solo tenía soporte para las placas Arduino y los clones o forks con los mismos microcontroladores que los Arduinos oficiales. Desde la versión 1.6.2 del IDE de arduino.cc y gracias al gestor de placas, podemos añadir soporte a otros microcontroladores y placas al IDE de Arduino, como al ESP8266.

Listado de URLs para soporte de tarjetas no oficiales: https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls

Además de los clásicos IDEs hay disponibles otros IDEs oficiales. Arduino.cc tiene disponible un IDE on-line dentro del entorno Arduino Create https://create.arduino.cc/ que es una plataforma on-line integrada que permite escribir código, acceder a contenido, configurar placas y compartir proyectos, muy enfocado al Internet de las Cosas (IoT).

También existen otros IDEs alternativos como Atmel Studio http://www.atmel.com/Microsite/atmel-studio/ que se verán a lo largo del curso.

Comunidad Arduino

Un factor del éxito de Arduino ha sido la comunidad que está apoyando este proyecto y que día a día publica nuevo contenido, divulga y responde a las dudas.

En Internet hay disponible todo tipo de cursos, tutoriales, herramientas de consulta, proyectos, etc… que ayudan a que se pueda usar Arduino con facilidad.

El primer sitio donde empezar para trabajar con Arduino es http://www.arduino.cc/ y el segundo sitio el playground de Arduino http://playground.arduino.cc/

Arduino playground es un wiki donde todos los usuarios de Arduino pueden contribuir. Es el lugar donde publicar y compartir código, diagrama de circuitos, tutoriales, trucos, cursos, etc.. y sobretodo el lugar donde buscar cuando tengamos dudas, un problema, una librería adecuada para nuestro proyecto, etc… Esa la base de datos de conocimiento por excelencia de Arduino.

Arduino playground: http://playground.arduino.cc/

Algunos apartados importantes en playground.

Otro lugar donde la comunidad colabora, se puede buscar información y preguntar las dudas que tengamos, es el foro Arduino: http://forum.arduino.cc/.

También existen lugares no oficiales de Arduino donde resolver nuestras dudas:

Arduino en las redes sociales:

Otro lugar de encuentro de la comunidad son diversos portales donde se publican proyectos con Arduino:

Por último, también hay espacios locales para la comunidad, son los llamados hacklabs hackerspace, makerspace, etc.. que aunque hay ciertas diferencias entre unos y otros, se trata de un sitio físico donde gente con intereses en ciencia, nuevas tecnologías, y artes digitales o electrónicas se puede conocer, socializar y colaborar. Puede ser visto como un laboratorio de comunidad abierta, un espacio donde gente de diversos trasfondos puede unirse. Pone al alcance de aficionados y estudiantes de diferentes niveles la infraestructura y ambiente necesarios para desarrollar sus proyectos tecnológicos.

Hacklab: https://es.wikipedia.org/wiki/Hacklab

Mejores prácticas Hackerspaces: https://elplatt.com/new-hackerspace-design-patterns

Listado de Hackerspaces: https://hackerspaces.org/wiki/List_of_ALL_Hacker_Spaces

También hay otro espacio local algo diferente que son los fablabs: es un espacio de producción de objetos físicos a escala personal o local que agrupa máquinas controladas por ordenadores.

Fablab: https://es.wikipedia.org/wiki/Fab_lab

Qué es un fablab: http://fab.cba.mit.edu/about/charter/

Este podcast explica las diferencias entre estos espacios: http://make.cesargarciasaez.com/2016/02/01/la-hora-maker-010-fablabs-makespaces-hackerspaces-y-hacklabs/

Movimiento maker: https://en.wikipedia.org/wiki/Maker_culture

Más información sobre la comunidad, makerspaces y fablabs, ver los artículos: