Archivo de la etiqueta: FTDI

Wifi en Arduino

El wifi es un mecanismo de conexión de dispositivos electrónicos de forma inalámbrica. Los dispositivos habilitados con wifi como Arduino, pueden conectarse a internet a través de un punto de acceso de red inalámbrica.

Wi-Fi es una marca de la Alianza Wi-Fi, la organización comercial que adopta, prueba y certifica que los equipos cumplen con los estándares 802.11 relacionados a redes inalámbricas de área local.

  • Los estándares IEEE 802.11b, IEEE 802.11g e IEEE 802.11n disfrutan de una aceptación internacional debido a que la banda de 2,4 GHz está disponible casi universalmente, con una velocidad de hasta 11 Mbit/s, 54 Mbit/s y 300 Mbit/s, respectivamente.
  • En la actualidad ya se maneja también el estándar IEEE 802.11ac, conocido como WIFI 5, que opera en la banda de 5 GHz y que disfruta de una operatividad con canales relativamente limpios. La banda de 5 GHz ha sido recientemente habilitada y, además, no existen otras tecnologías (Bluetooth, microondas, ZigBee) que la estén utilizando, por lo tanto existen muy pocas interferencias. Su alcance es algo menor que el de los estándares que trabajan a 2,4 GHz (aproximadamente un 10 %), debido a que la frecuencia es mayor (a mayor frecuencia, menor alcance).

Existen otras tecnologías inalámbricas como Bluetooth que también funcionan a una frecuencia de 2,4 GHz, por lo que puede presentar interferencias con la tecnología wifi. Debido a esto, en la versión 1.2 del estándar Bluetooth actualizó su especificación para que no existieran interferencias con la utilización simultánea de ambas tecnologías, además se necesita tener 40 000 kbit/s.

Existen varias alternativas para garantizar la seguridad de estas redes. Las más comunes son la utilización de protocolos de cifrado de datos para los estándares wifi como el WEP, el WPA, o el WPA2 que se encargan de codificar la información transmitida para proteger su confidencialidad, proporcionados por los propios dispositivos inalámbricos. La mayoría de las formas son las siguientes:

  • WEP, cifra los datos en su red de forma que sólo el destinatario deseado pueda acceder a ellos. Los cifrados de 64 y 128 bits son dos niveles de seguridad WEP. WEP codifica los datos mediante una “clave” de cifrado antes de enviarlo al aire. Este tipo de cifrado no está recomendado debido a las grandes vulnerabilidades que presenta ya que cualquier cracker puede conseguir sacar la clave, incluso aunque esté bien configurado y la clave utilizada sea compleja.
  • WPA: presenta mejoras como generación dinámica de la clave de acceso. Las claves se insertan como dígitos alfanuméricos.
  • WPA2 (estándar 802.11i): que es una mejora relativa a WPA. En principio es el protocolo de seguridad más seguro para Wi-Fi en este momento. Sin embargo requieren hardware y software compatibles, ya que los antiguos no lo son. Utiliza el algoritmo de cifrado AES (Advanced Encryption Standard).
  • IPSEC (túneles IP) en el caso de las VPN y el conjunto de estándares IEEE 802.1X, que permite la autenticación y autorización de usuarios.
  • Filtrado de MAC, de manera que solo se permite acceso a la red a aquellos dispositivos autorizados. Es lo más recomendable si solo se va a usar con los mismos equipos, y si son pocos.
  • Ocultación del punto de acceso: se puede ocultar el punto de acceso (router) de manera que sea invisible a otros usuarios.

Dispositivos de distribución o de red en wifi son:

  • Los puntos de acceso son dispositivos que generan un set de servicio, que podría definirse como una red wifi a la que se pueden conectar otros dispositivos. Los puntos de acceso permiten, en resumen, conectar dispositivos de forma inalámbrica a una red existente. Pueden agregarse más puntos de acceso a una red para generar redes de cobertura más amplia, o conectar antenas más grandes que amplifiquen la señal.
  • Los repetidores inalámbricos son equipos que se utilizan para extender la cobertura de una red inalámbrica, éstos se conectan a una red existente que tiene señal más débil y crean una señal limpia a la que se pueden conectar los equipos dentro de su alcance. Algunos de ellos funcionan también como punto de acceso.
  • Los enrutadores inalámbricos son dispositivos compuestos, especialmente diseñados para redes pequeñas (hogar o pequeña oficina). Estos dispositivos incluyen, un enrutador (encargado de interconectar redes, por ejemplo, nuestra red del hogar con Internet), un punto de acceso (explicado más arriba) y generalmente un conmutador que permite conectar algunos equipos vía cable (Ethernet y USB). Su tarea es tomar la conexión a Internet, y brindar a través de ella acceso a todos los equipos que conectemos, sea por cable o en forma inalámbrica.

Los estándares 802.11b y 802.11g utilizan la banda de 2,4 GHz. En esta banda se definieron 11 canales utilizables por equipos wifi, que pueden configurarse de acuerdo a necesidades particulares. Sin embargo, los 11 canales no son completamente independientes (un canal se superpone y produce interferencias hasta un canal a 4 canales de distancia). El ancho de banda de la señal (22 MHz) es superior a la separación entre canales consecutivos (5 MHz), por eso se hace necesaria una separación de al menos 5 canales con el fin de evitar interferencias entre celdas adyacentes, ya que al utilizar canales con una separación de 5 canales entre ellos (y a la vez cada uno de estos con una separación de 5 MHz de su canal vecino) entonces se logra una separación final de 25 MHz, lo cual es mayor al ancho de banda que utiliza cada canal del estándar 802.11, el cual es de 22 MHz. Tradicionalmente se utilizan los canales 1, 6 y 11, aunque se ha documentado que el uso de los canales 1, 5, 9 y 13 (en dominios europeos) no es perjudicial para el rendimiento de la red.

Esta asignación de canales usualmente se hace sólo en el Punto de acceso, pues los “clientes” automáticamente detectan el canal, salvo en los casos en que se forma una red “Ad-Hoc” o punto a punto cuando no existe punto de acceso.

Canales en 802.11 (wifi) frente a 802.15.4 (zigbee):

Y dentro del espectro electromagnético:

ISM (Industrial, Scientific and Medical) son bandas reservadas internacionalmente para uso no comercial de radiofrecuencia electromagnética en áreas industrial, científica y médica. En la actualidad estas bandas han sido popularizadas por su uso en comunicaciones WLAN (e.g. Wi-Fi) o WPAN (e.g. Bluetooth).

El uso de estas bandas de frecuencia está abierto a todo el mundo sin necesidad de licencia, respetando las regulaciones que limitan los niveles de potencia transmitida. Este hecho fuerza a que este tipo de comunicaciones tengan cierta tolerancia frente a errores y que utilicen mecanismos de protección contra interferencias, como técnicas de ensanchado de espectro

El espectro de RF para las comunicaciones inalámbricas pertenecientes a dispositivos compatibles con IEEE 802.11 opera en bandas de frecuencias de 2,4 GHz y 5 GHz y cada una de estas bandas tiene su propio comportamiento único que tiene un impacto directo en el rendimiento de la red.

Además, el 802.11n puede utilizar la banda de 5 GHz, que es casi siempre menos concurrida y con menos interferencia que la banda de 2,4 GHz. Pero también funciona en 2,4 GHz, y los clientes 802.11n pueden asociarse con facilidad allí. La Tabla 1 muestra las frecuencias disponibles para los diferentes tipos de clientes inalámbricos.

IEEE 802.11ac (también conocido como WiFi 5G o WiFi Gigabit) es una mejora a la norma IEEE 802.11n, se ha desarrollado entre el año 2011 y el 2013, y finalmente aprobada en enero de 2014.

El estándar consiste en mejorar las tasas de transferencia hasta 433 Mbit/s por flujo de datos, consiguiendo teóricamente tasas de 1.3 Gbit/s empleando 3 antenas. Opera dentro de la banda de 5 GHz, amplía el ancho de banda hasta 160 MHz (40 MHz en las redes 802.11n), utiliza hasta 8 flujos MIMO e incluye modulación de alta densidad (256 QAM).

Wi-Fi Direct es una norma que permite que varios dispositivos Wi-Fi se conecten entre sí sin necesidad de un punto de acceso intermedio.

Wi-Fi Direct incrusta en esencia un punto de acceso en forma de software (Soft AP), en cualquier dispositivo que deba soportar Direct. El soft AP proporciona una versión de Wi-Fi Protected Setup al ser pulsado el botón o con la configuración basada en PIN. Cuando un dispositivo ingresa al rango del anfitrión Wi-Fi Direct, éste se puede conectar usando el protocolo ad hoc existente, y luego recolecta información de configuración usando una transferencia del mismo tipo de la de Protected Setup. La conexión y configuración se simplifica de tal forma que algunos sugieren que esto podría reemplazar al Bluetooth en algunas situaciones. El estándar también incluye seguridad WPA2 y ofrece controlar el acceso a redes corporativas. Los dispositivos certificados para Wi-Fi Direct se pueden conectar “uno a uno” o “uno a muchos”, y no todos los productos conectados necesitan tener Wi-Fi Direct. Con un solo dispositivo Wi-Fi Direct habilitado se pueden conectar dispositivos con el estándar previo de Wi-Fi.

Además de funcionar en diferentes canales, varias redes Wi-Fi pueden compartir canalesUn conjunto de servicios (Sevice Set) es el conjunto de todos los dispositivos asociados con una red Wi-Fi particular. El conjunto de servicios puede ser local, independiente, extendido o de malla. Cada conjunto de servicios tiene un identificador asociado, el identificador de conjunto de servicios (SSID) de 32 bytes, que identifica la red en particular. El SSID se configura dentro de los dispositivos que se consideran parte de la red, y se transmite en los paquetes. Los receptores ignoran paquetes inalámbricos de redes con un SSID diferente.

Los nodos Wi-Fi que funcionan en modo ad-hoc se refieren a dispositivos que hablan directamente entre sí sin necesidad de hablar primero con un punto de acceso. Por ejemplo las impresoras.

Cada vez más en los últimos años, se han incorporado módulos Wi-Fi embebidos que incorporan un sistema operativo en tiempo real y proporcionan un medio simple de comunicación sin cables para cualquier dispositivo que que disponga de un puerto serie. Esto permite el diseño de dispositivos de monitorización simples. Un ejemplo es un dispositivo portátil de electrocardiograma que monitorea a un paciente en casa. Este dispositivo habilitado para Wi-Fi puede comunicarse a través de Internet usando la red wifi del paciente.

Estos módulos Wi-Fi están diseñados por OEMs para que los implementadores sólo necesiten un conocimiento mínimo de Wi-Fi para proporcionar conectividad Wi-Fi para sus productos.

En junio de 2014, Texas Instruments presentó el primer microcontrolador ARM Cortex-M4 con una MCU dedicada Wi-Fi embebida, el SimpleLink CC3200. Hace que los sistemas embebidos con conectividad Wi-Fi sean posibles de construir como dispositivos de un solo chip, lo que reduce su costo y tamaño mínimo, lo que hace más práctico para construir controladores de red inalámbrica en objetos ordinarios de bajo costo

Otro ejemplo es el del Arduino MKR1000 que usa el microcontrolador ATSAMW25 (http://www.atmel.com/devices/ATSAMW25.aspx) con un módulo wifi y otro de criptoauteticación incluido.

Más información:

A Arduino es posible añadirle conectividad Wifi de forma muy sencilla y ampliar las posibilidades de este microcontrolador con comunicación inalámbrica Wifi.

Hay varias formas de añadir hardware Wifi a Arduino, ya sea con un shield, una breakout board específica, con microcontroladores que tenga wifi integrado o con placas Arduinos que tenga chip wifi en la misma placa. Veamos varios casos de estos tipos, como conectarlos y usarlos, así como las librerías a usar en cada caso.

Buena parte de los visto en Ethernet con Arduino, es válido para wifi, puesto que el protocolo tcp/ip usado es el mismo y solo cambia el medio de comunicación. Trasladar un proyecto de ethernet a wifi es sencillo, solo cambiando la librería para usar el hardware y adaptar los comando en función de los métodos que tengan las librerías.

ESP8266

El ESP8266 es un chip Wi-Fi de bajo coste con pila TCP/IP completa y capacidad de MCU (Micro Controller Unit) producida por el fabricante chino Espressif Systems, con sede en Shanghai.

El chip primero llegó a la atención de los fabricantes occidentales en agosto de 2014 con el módulo ESP-01. Este pequeño módulo permite a los microcontroladores conectarse a una red Wi-Fi y realizar conexiones TCP/IP sencillas utilizando comandos de tipo Hayes. Sin embargo, en ese momento casi no había documentación en inglés sobre el chip y los comandos que aceptaba. El precio muy bajo y el hecho de que había muy pocos componentes externos en el módulo que sugiere que podría ser muy barato en el volumen, atrajo a muchos hackers para explorar el módulo, el chip y el software en él, así como para traducir La documentación china.

El ESP8285 es un ESP8266 con 1 MB de flash incorporado, lo que permite dispositivos de un solo chip capaces de conectarse a Wi-Fi. Muchos encapsulados del ESP8266 viene con 1 MB de flash.

El esp8266 es un módulo muy de moda que va alimentado a 3.3V y que hay mucha documentación en internet. Este se presenta con muchos encapsulados: http://www.esp8266.com/wiki/doku.php?id=esp8266-module-family

Características:

  • 32-bit RISC CPU: Tensilica Xtensa LX106 running at 80 MHz*
  • 64 KiB of instruction RAM, 96 KiB of data RAM
  • External QSPI flash – 512 KiB to 4 MiB* (up to 16 MiB is supported)
  • IEEE 802.11 b/g/n Wi-Fi
  • 16 GPIO pins
  • SPI, I²C,
  • I²S interfaces with DMA (sharing pins with GPIO)
  • UART on dedicated pins, plus a transmit-only UART can be enabled on GPIO2
  • 1 port 10-bit ADC

* Both the CPU and flash clock speeds can be doubled by overclocking on some devices. CPU can be run at 160 MHz and flash can be sped up from 40 MHz to 80 MHz.

A finales de octubre de 2014, Espressif lanzó un kit de desarrollo de software (SDK) que permite programar el chip, eliminando la necesidad de un microcontrolador por separado. Desde entonces, ha habido muchos lanzamientos oficiales de SDK; Espressif mantiene dos versiones del SDK – una basada en RTOS y la otra basada en callbacks.

Una alternativa al SDK oficial de Espressif es el open source esp-open-sdk que se basa en la cadena de herramientas (toolchain) GCC. ESP8266 utiliza el microcontrolador Cadence Tensilica LX106 y la cadena de herramientas GCC que es de código abierto y mantenida por Max Filippov. Otra alternativa es “Unofficial Development Kit” de Mikhail Grigorev.

Otros SDK de código abierto para el ESP8266:

  • NodeMCU: un firmware basado en Lua.
  • Arduino: un firmware basado en C ++. Este núcleo permite que la CPU ESP8266 y sus componentes Wi-Fi sean programados como cualquier otro dispositivo Arduino. El Arduino Core ESP8266 está disponible a través de GitHub: https://github.com/esp8266/Arduino y cuyo reference es https://github.com/esp8266/Arduino/blob/master/doc/reference.md
  • MicroPython: una implementación de Python para dispositivos embebidos a la plataforma ESP8266.
  • ESP8266 BASIC: Un intérprete básico de código abierto específicamente diseñado para el Internet de las cosas.
  • Mongoose Firmware: Un firmware de código abierto con servicio gratuito en la nube: https://github.com/cesanta/mongoose-iot

Github del foro ESP8266: https://github.com/esp8266

El módulo WIFI ESP8266, que es algo muy parecido a los módulos Bluetooth y que al igual que ellos incluye toda la electrónica necesaria para la comunicación Radio Frecuencia en la banda WFI, así como la pila TCP/IP y que se comunica con nosotros a través de un puerto serie. De hecho, exactamente igual que los modos HC-06 y HC-05 se gobierna mediante comandos AT (comandos hayes https://es.wikipedia.org/wiki/Conjunto_de_comandos_Hayes) y todo por un precio similar al de los Bluetooth.

Dentro de la gran cantidad de usos para este módulo caben destacar los siguientes:

  • Electrodomésticos conectados.
  • Automatización del hogar.
  • Automatización de la industria.
  • Cámaras IP.
  • Redes de sensores.
  • Wereables.
  • IoT (Internet of Things o Internet de las Cosas)
  • IIoT (Industrial Internet of Things o Internet de las Cosas para el sector Industrial)

Más información:

Características

Datos de ESP8266 de datasheet:

  • 802.11 b/g/n
  • Integrated low power 32-bit MCU
  • Integrated 10-bit ADC • Integrated TCP/IP protocol stack
  • Integrated TR switch, balun, LNA, power amplifier and matching network
  • Integrated PLL, regulators, and power management units
  • Supports antenna diversity
  • WiFi 2.4 GHz, support WPA/WPA2
  • Support STA/AP/STA+AP operation modes
  • Support Smart Link Function for both Android and iOS devices
  • SDIO 2.0, (H) SPI, UART, I2C, I2S, IR Remote Control, PWM, GPIO
  • STBC, 1×1 MIMO, 2×1 MIMO
  • A-MPDU & A-MSDU aggregation & 0.4s guard interval
  • Deep sleep power <10uA, Power down leakage current < 5uA
  • Wake up and transmit packets in < 2ms
  • Standby power consumption of < 1.0mW (DTIM3) • +20 dBm output power in 802.11b mode
  • Operating temperature range -40C ~ 125C
  • FCC, CE, TELEC, WiFi Alliance, and SRRC certified

EL ESP8266 no tiene ROM y usa una ROM externa SPI y soporta hasta 16MB.

Web Oficial del producto: https://espressif.com/en/products/hardware/esp8266ex/overview

Recursos: https://espressif.com/en/products/hardware/esp8266ex/resources

Datasheet: https://espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf

Tabla de consumo del módulo ESP8266:

Si queremos alimentar el módulo ESP8266 con Arduino debemos ver las limitaciones de Arduino: pin power limitations: http://playground.arduino.cc/Main/ArduinoPinCurrentLimitations, a 5V la limitación es de 1A del regulador de tensión. Como va alimentado a 3.3V la limitación es de 150mA limitado por el regulador de tensión. Regulador http://www.ti.com/lit/ds/symlink/lp2985-33.pdf, por lo tanto alimentar el ESP8266 desde el pin de 3.3V puede dar problemas y es recomendable usar otra fuente de alimentación.

Pinout ESP8266:

Pinout placas: http://www.pighixxx.com/test/portfolio-items/esp8266/?portfolioID=360

Diagrama de bloques

Los módulos ESP8266 los podemos encontrar en diferentes encapsulados y placas:

Interesante artículo sobre que módulo wifi ESP8266 elegir: http://polaridad.es/esp8266-modulo-wifi-elegir-caracteristicas/

ESP WROOM otro encapsulado ya trae una memoria Flash SPI de 2MB y con certificación FCC y CE:

Características de los módulos:

Name Active pins Pitch Form factor LEDs Antenna Shielded? dimensions (mm) Notes
ESP-01 6 0.1″ 2×4 DIL Yes PCB trace No 14.3 × 24.8
ESP-02 6 0.1″ 2×4 castellated No U-FL connector No 14.2 × 14.2
ESP-03 10 2 mm 2×7 castellated No Ceramic No 17.3 × 12.1
ESP-04 10 2 mm 2×4 castellated No None No 14.7 × 12.1
ESP-05 3 0.1″ 1×5 SIL No U-FL connector No 14.2 × 14.2
ESP-06 11 misc 4×3 dice No None Yes 14.2 × 14.7 Not FCC approved
ESP-07 14 2 mm 2×8 pinhole Yes Ceramic + U-FL connector Yes 20.0 × 16.0 Not FCC approved
ESP-08 10 2 mm 2×7 castellated No None Yes 17.0 × 16.0 Not FCC approved
ESP-09 10 misc 4×3 dice No None No 10.0 × 10.0
ESP-10 3 2 mm? 1×5 castellated No None No 14.2 × 10.0
ESP-11 6 0.05″ 1×8 pinhole No Ceramic No 17.3 × 12.1
ESP-12 14 2 mm 2×8 castellated Yes PCB trace Yes 24.0 × 16.0 FCC and CE approved[14]
ESP-12E 20 2 mm 2×8 castellated Yes PCB trace Yes 24.0 × 16.0 4 MB Flash
ESP-12F 20 2 mm 2×8 castellated Yes PCB trace Yes 24.0 × 16.0 FCC and CE approved. Improved antenna performance. 4 MB Flash
ESP-13 16 1.5 mm 2×9 castellated No PCB trace Yes W18.0 x L20.0 Marked as ″FCC″. Shielded module is placed sideways, as compared to the ESP-12 modules.
ESP-14 22 2 mm 2×8 castellated +6 No PCB trace Yes 24.3 x 16.2

En nuestro caso vamos a usar el ESP-01:

Esquemático:

Wiki: https://nurdspace.nl/ESP8266

Módulo usado:

También tenemos placas basadas en ESP8266 e incluso con puerto USB integrado:

Y un Shield ESP8266 para Arduino: https://www.sparkfun.com/products/13287

Más información:

El sucesor del ESP8266 puede que sea el ESP32 https://espressif.com/en/products/hardware/esp32/overview con wifi + bluetooth y más potente.

Datasheet ESP32: https://espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

Primeras impresiones sobre el ESP32: https://www.sparkfun.com/news/2017

Características ESP32:

  • CPU: Xtensa Dual-Core 32-bit LX6 microprocessor, operating at 160 or 240 MHz and performing at up to 600 DMIPS
  • Memory: 520 KiB SRAM
  • Wireless connectivity:
    • Wi-Fi: 802.11b/g/n/e/i
    • Bluetooth: v4.2 BR/EDR and BLE
  • Peripheral interfaces:
    • 12-bit SAR ADC up to 18 channels
    • 2 × 8-bit DACs
    • 10 × touch sensors
    • Temperature sensor
    • 4 × SPI
    • 2 × I²S
    • 2 × I²C
    • 3 × UART
    • 1 SD/SDIO/MMC host
    • 1 slave (SDIO/SPI)
    • Ethernet MAC interface with dedicated DMA and IEEE 1588 support
    • CAN bus 2.0
    • IR (TX/RX)
    • Motor PWM
    • LED PWM up to 16 channels
    • Hall effect sensor
    • Ultra low power analog pre-amplifier
  • Security:
    • IEEE 802.11 standard security features all supported, including WFA, WPA/WPA2 and WAPI
    • Secure boot
    • Flash encryption
    • 1024-bit OTP, up to 768-bit for customers
    • Cryptographic hardware acceleration: AES, SHA-2, RSA, ECC, Random Number Generator (RNG)

Uso ESP8266 con Arduino (Puerto Serie)

El ESP8266 se puede usar con un microcontrolador como Arduino conectado por puerto serie y manejarlo con comandos hayes o programarlo como si de un microcontrolador se tratara con el IDE de Arduino usando el SDK https://github.com/esp8266/Arduino y usar el lenguaje de programación de Arduino (el core de Arduino).

Pines:

  • TX (goes to the 3.3V Rx of the UART USB adapter to the PC)
  • CH_PD (enable/power down, must be pulled to 3.3v directly or via resistor)
  • RESET
  • VCC (3.3v power supply)
  • GND (connect to power ground)
  • GPIO 2
  • GPIO 0 (leave open or pull up for normal, pull down to upload new firmware)
  • RX (goes to the 3.3V Tx of the UART USB adapter to the PC)

Para usar el ESP8266 con Arduino vamos a conectarnos por el puerto serie y mandar comandos AT (hayes) para manejarlo. Este es el esquema.

IMPORTANTE:

  • El ESP8266 va alimentado a 3,3V, ¡no alimentarlo con 5 voltios!
  • El ESP8266 necesita comunicarse vía serie a 3.3V y no tiene entradas tolerantes 5V, por lo que necesita la conversión de nivel para comunicarse con un microcontrolador 5V como la mayoría de los Arduinos

Sin embargo, esta segunda advertencia puede ser ignorada y conectar el puerto serie directamente a Arduino, pero existe el peligro de dañar el módulo.

Con un programador FTDI que tenga salida a 3.3V podemos hacer lo mismo que con un Arduino pero sin ningún peligro.

ESP8266 quick start guide: http://rancidbacon.com/files/kiwicon8/ESP8266_WiFi_Module_Quick_Start_Guide_v_1.0.4.pdf

Guia sparkfun del ESP8266: https://learn.sparkfun.com/tutorials/esp8266-thing-hookup-guide

Ejemplo de level shifter para usar con Arduino:

Cheatsheet: https://cdn.sparkfun.com/datasheets/Wireless/WiFi/ESP8266ModuleV1.pdf

Por lo tanto la primera forma de usar el módulo ESP8266 es comunicarse con él a través del puerto serie y manejarlo mediante los comandos AT (hayes) que tiene en su firmware.

El conjunto de comandos Hayes es un lenguaje desarrollado por la compañía Hayes Communications que prácticamente se convirtió en estándar abierto de comandos para configurar y parametrizar módems. Los caracteres «AT», que preceden a todos los comandos, significan «Atención», e hicieron que se conociera también a este conjunto de comandos como comandos AT. Midiendo la longitud de los bits se puede determinar en detalle la velocidad de transmisión.

Comandos hayes:

Comandos Hayes para ESP8266:

Proyectos con ESP8266:

Más información:

Videos:

Uso ESP8266 con IDE Arduino

Hemos visto como realizar las conexiones y vimos los comandos AT que nos permiten configurar las acciones del WIFI. El ESP8266 dispone internamente de un pequeño procesador, prácticamente es capaz de replicar casi cualquier cosa los Arduinos puedan hacer. Así que los proyectos con sensores más Arduinos que envían los datos a la WIFI mediante un ESP8266, es muy probable que podamos ahorrarnos el Arduino en el proceso.

Gracias a un firmware basado en C ++, permite que la CPU ESP8266 y sus componentes Wi-Fi sean programados como cualquier otro dispositivo Arduino.

  • Puedes desarrollar con el mismo IDE que ya conoces
  • Han hecho un Cross compiler, de forma que prácticamente utilizas los mismos comandos que utilizas con Arduino, con lo que te ahorras aprender nada nuevo
  • Dependiendo del modelo de ESP8266 que tengas, dispones de más o menos pines disponibles con PWM y otras cosas más como I2C y SPI, pero para el modelo ESP8266-01 solo tienes dos pines disponibles GPIO0 y GPIO2
  • Puedes programar el procesador de tu ESP8266 exactamente como si fuera un Arduino con los mismos comandos, y en lo que se refiere a la WIFI, puedes olvidarte de los comandos AT, porque incluye una serie de librerías, que imitan la librería WIFI de Arduino con lo que se pueden reutilizar muchos programas.  

El Arduino Core ESP8266 está disponible a través de GitHub: https://github.com/esp8266/Arduino

Reference de Arduino core a ESP8266: https://github.com/esp8266/Arduino/blob/master/doc/reference.md

Toda la documentación del soporte de Arduino core a ESP8266: https://github.com/esp8266/Arduino/tree/master/doc

Documentación de la librería esp8266wifi: https://github.com/esp8266/Arduino/tree/master/doc/esp8266wifi que usa los mismos métodos que https://www.arduino.cc/en/Reference/WiFi

Podemos descargar un IDE ya configura para ESP8266 de https://github.com/esp8266/Arduino/releases/

O podemos instalar el soporte a terceros en nuestro IDE simplemente añadiendo el texto “http://arduino.esp8266.com/stable/package_esp8266com_index.json” en propiedades:

Y luego desde el gestor de tarjetas dar a instalar al soporte para ESP8266.

ESP8266 Community: http://arduino.esp8266.com/stable/package_esp8266com_index.json

  • Generic ESP8266 modules
  • Olimex MOD-WIFI-ESP8266
  • NodeMCU 0.9 (ESP-12)
  • NodeMCU 1.0 (ESP-12E)
  • Adafruit HUZZAH ESP8266 (ESP-12)
  • SparkFun Thing
  • SweetPea ESP-210
  • WeMos D1
  • WeMos D1 mini

Para instalar el Arduino Core ESP8266 en nuestro IDE de Arduino seguir las instrucciones: http://www.instructables.com/id/Setting-Up-the-Arduino-IDE-to-Program-ESP8266/?ALLSTEPS

IMPORTANTE: Cuando cargas un sketch en el ESP8266 con el IDE Arduino estamos cargando en la flash de ESP8266 un nuevo firmware borrando el que viene por defecto visto anteriormente para manejar el módulo con comando hayes.

Otras características de este soporte:

  • Actualización OTA
  • Soporta muchas de las librerías de Arduino y otras librerías hechas por terceros está ya adaptadas para usar con el ESP8266.

Más información:

Firmware ESP8266

Como hemos hablado el módulo ESP8266 es un microcontrolador como los que hemos visto con Arduino y podemos cargarle un firmware con un programa que hayamos hecho y compilado con el IDE de Arduino o usar un firmware como el que viene por defecto que es el de comandos hayes.

Además de los firmwares anteriores tenemos otros firmware disponibles como el oficial basado en un RTOS.

Para descargar las herramientas y últimas versiones del firmware usar la web: https://espressif.com/en/products/hardware/esp8266ex/resources

Más información de como actualizar firmware (version actualizada en la parte de ejercicios):

Ejercicios ESP8266

Conexión a Arduino

Lo primero es decir que este es módulo muy sencillo y diseñado desde el principio con la Internet of Things en mente (IOT), y por eso incluye todo lo necesario para conectarse a un punto de acceso WIFI mediante comandos de texto AT, vía un puerto serie, que puede ser configurada a diferentes velocidades.

Una vez que lo configuramos para que se conecte a nuestra WIFI, el módulo es capaz de enviar información que le remitimos vía la puerta serie a una dirección IP y puerto que deseemos.

Cuando se trata de recibir, limpia todo el empaquetado TCP/IP y nos reenvía por la puerta serie la información de datos limpia, con lo que tiene la enorme virtud de permitirnos olvidarnos de la gestión del TCP/IP y de las demandas de procesador y memoria que suponen. A cambio no es exactamente una conexión WIFI, porque no tenemos acceso al stack o al socket IP pero para el Arduino esto es casi una ventaja.

La fuente interna de 3.3V del Arduino da un máximo de 150 mA, cuando el consumo del módulo suele ser en el arranque bastante superior a esto, lo que le llevará a unos arranques poco fiables, y aunque se acaba consiguiendo, deben repetirse una y otra vez. En nuestro caso usaremos una fuente externa de alimentación de 3.3V para alimentar este módulo ESP8266.

ESP8266 programado por puerto serie

Conexión con programador FTDI:

Conexión con Arduino:

Conectar un terminal serie a 115200-8-N y mandar el comando AT, si nos responde OK es que ya estamos conectados con el módulo.

Manual oficial de comandos: http://www.espressif.com/sites/default/files/4a-esp8266_at_instruction_set_en_v1.5.4_0.pdf

Ejecutar los siguientes comandos y ver lo que devuelve:

  • AT+RST: reinicia el módulo
  • AT+GMR: versión de firmware
  • AT+CWMODE=3: activa modo AP, comprobar redes wifi
  • AT+CWLAP: para ver las redes wifi
  • AT+CWJAP=”SSID”,”password”: Conectarse a una red wifi (AT+CWJAP=”AndroidAP4628″,”esp8266wifi”)
  • AT+CIFSR: comprobar la IP asignada

Actuar como un cliente TCP:

  • AT+CIPMUX=1: Habilitar múltiples conexiones
  • AT+CIPSTART=4,”TCP”,”google.com”,80: Especifica el canal de conexión que desea conectar (0 – 4), el tipo de protocolo (TCP / UDP), la dirección IP (o el dominio si tiene acceso a DNS) y el número de puerto
  • A continuación, debe especificar la cantidad de datos que desea enviar (después de especificar qué canal). Vamos a enviar “GET / HTTP / 1.0 \r \n \r \n” que es 18 bytes: AT+CIPSEND=4,18
  • Y recibiremos la respuesta del servidor:

+IPD,4,559:HTTP/1.0 301 Moved Permanently
Location: http://www.google.com/
Content-Type: text/html; charset=UTF-8
Date: Sat, 12 Nov 2016 16:37:23 GMT
Expires: Mon, 12 Dec 2016 16:37:23 GMT
Cache-Control: public, max-age=2592000
Server: gws
Content-Length: 219
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Connection: close
<HTML><HEAD><meta http-equiv=”content-type” content=”text/html;charset=utf-8″>
<TITLE>301 Moved</TITLE></HEAD><BODY>
<H1>301 Moved</H1>
The document has moved
<A HREF=”http://www.google.com/”>here</A&gt;.
</BODY></HTML>
4,CLOSED

Actuar como servidor:

  • Comprobar que IP tenemos con AT+CIFSR
  • AT+CIPSERVER=1,1336:  para poner a escuchar en un puerto, en este caso el 1336
  • Desde otro dispositivo en la red: telnet 192.168.1.2 1336
  • En el puerto serie veré todo lo que se escriba por telnet
  • Para responder desde el ESP8266 debo usar AT+CIPSEND=0,8 seguido del texto. En este caso es el canal 0 y mando 8 caracteres.

Hacer lo mismo pero usando Arduino, para ello conectarlo según el esquema superior y cargar el programa:

#include <SoftwareSerial.h>
SoftwareSerial BT1(3, 2); // RX | TX
void setup()
{ Serial.begin(9600);
 BT1.begin(115200);
}
void loop()
{
 if (BT1.available())
 { char c = BT1.read();
   Serial.print(c);
 }
 if (Serial.available())
 { char c = Serial.read();
   BT1.print(c);
 }
}

Configurar el baud rate de ESP8266 a 9600 para que funcione mejor con el comando “AT+UART_DEF=9600,8,1,0,0”, puesto que a 115200 da problemas con el puerto serie software.

Para hacer una reseteo de la configuración de fábrica usar el comando: “AT+RESTORE

Hacer un programa con Arduino que se conecte automáticamente a una red y nos puestre la IP asignada:

  • AT+CWMODE_DEF=1
  • AT+CWJAP=”SSID”,”paswword”)
  • AT+CIFSR: comprobar la IP asignada

Solución: Ejercicio 61 https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio61-ESP8266

Más información:

Configuración como punto de acceso

Podemos poner el ESP8266 en modo punto de acceso para que se conecten otros dispositivos wifi, recordad que es un modo soft AP.

Escribir la siguiente secuencia de comandos:

  • AT+CWSAP=”NoWorriESSID”,”password”,3,0
  • AT+CWMODE=3
  • AT+CWLIF: IP de los dispositivos conectados

Para saber el significado de cada parámetro y sus opciones ver https://espressif.com/sites/default/files/documentation/4a-esp8266_at_instruction_set_en.pdf

Más información:

ESP8266 programado con IDE Arduino

Conectar al programador FTDI como hemos visto anteriormente. Pero para programar el módulo (Y para actualizar el firmware) necesitáis colocar el módulo en estado de programación y eso se consigue poniendo a GND la patilla GPIO0.

Vamos a programar el blink de Arduino en la patilla GPIO2, que es la que nos queda libre:

void setup()
  { pinMode(2, OUTPUT); }

void loop()
  { digitalWrite(2, HIGH);  
    delay(1000);  
    digitalWrite(2, LOW);
    delay(1000);   
  }

Para probarlo.

IMPORTANTE: Al cargar un programa pierdo el firmware original.

Más información:

Veamos los ejemplos de ESP8266 que vienen en el soporte para el IDE de Arduino, usando la librería ESP8266WiFi.h:

  • Blink
  • ESP8266Wifi/Wifiscan: Scan networks
  • ESP8266Wifi/WifiClient Conectar a wifi
  • ESP8266WebSerber/HelloServer: Servidor web wifi

El reference para programar:

Firmware Update

Para actualizar el firmware necesitamos descargar la herramienta “flash download tools” para el ESP8266 y el firmware con los comandos hayes, además aprovechamos para actualizar a la última versión del firmware.

Para programar recordar y actualizar firmware recordar que el pin GPIO0 debe estar a masa y que hay que un reset del módulo para comenzar la carga del nuevo firmware.

Descarga: https://espressif.com/en/products/hardware/esp8266ex/resources

Descargar la última versión de:

  • Tools/Flash Download Tools V3.4.2 (ESP8266 & ESP32)
  • SDK & demos/ESP8266 NONOS SDK V2.0.0 20160810

Abrir la aplicación Flash download tool y elegir ESP8266. Luego configurar de la siguiente forma:

esp8266

Configurando los ficheros para BOOT MODE Flash size 8Mbit: 512KB+512KB:

  • boot_v1.2+.bin              0x00000
  • user1.1024.new.2.bin        0x01000
  • esp_init_data_default.bin   0xfc000 (optional)
  • blank.bin                   0x7e000
  • blank.bin                  0xfe000

Que se encuentran en el directorio bin del fichero de SDK que nos hemos descargado.

Para comprobar la frecuencia de cristal del módulo y la flash, simplemente dando a start sin seleccionar los ficheros y reseteando el módulo obtendremos la información.

Más información sobre el Firmware update (como referencia no están actualizados):

IMPORTANTE: no descargar nada de fuentes no fiables

NODEMCU

NodeMCU es una plataforma IoT de código abierto. Incluye firmware que se ejecuta en el ESP8266 Wi-Fi SoC de Espressif Systems y el hardware que se basa es el módulo ESP-12.

El término “NodeMCU” por defecto se refiere al firmware en lugar de los kits de desarrollo de ESP8266. El firmware utiliza el lenguaje de secuencias de comandos Lua. Se basa en el proyecto eLua, y está basado en el SDK Espressif Non-OS SDK for ESP8266.

Un grupo de desarrolladores chinos de plataformas abiertas de hardware, quienes se basaron en el ESP8266 para lanzar un kit llamado NodeMCU para el desarrollo de prototipos compatible con Arduino, que se programa en lenguaje Lua, con conectividad USB y Wi-Fi, y a un precio sorprendentemente bajo.

Pinout:

Web oficial: http://www.nodemcu.com/index_en.html

Github: https://github.com/nodemcu

Documentación: http://nodemcu.readthedocs.io/en/master/

Lua: https://en.wikipedia.org/wiki/Lua_(programming_language)

Firmware: https://github.com/nodemcu/nodemcu-firmware

Node mcu flasher: https://github.com/nodemcu/nodemcu-flasher

Más información:

Tutorial de uso: http://blog.nyl.io/esp8266-meets-nodemcu/

Proyectos con nodemcu:

Arduino UNO Wifi

Se trata de una nueva placa de arduino.org que es el clásico Arduino UNO al que le añade en la misma placa y con el formato del Arduino UNO un chip ESP8266, obteniendo al final un Arduino UNO con conectividad wifi. Es el módulo perfecto para comenzar un proyectos de IoT.

Datasheets:

A nivel de entradas y salidas y otras características físicas es exactamente igual a un Arduino UNO, pero se le ha añadido un módulo wifi ESP8266 que es un SoC con la pila de protocolos TCP/IP integrada que puede dar acceso a la red wifi o el puede actuar como un punto de acceso.

Una de las características más interesantes de el Arduino UNO wifi es que soporta programación OTA (over-the-air), tanto para transferir sketches como para actualizar el firmware wifi.

Información de producto http://www.arduino.org/products/boards/arduino-uno-wifi

En el Arduino UNO wifi, hay un chip SC16IS750IBS con una UART y un interfaz I2C/SPI que permite la comunicación entre el AtMega16u2, AtMega328p y el ESP8266EX. Este chip tiene un interfaz I2C/SPI esclavo que hace de interfaz a una UART, así como 8 pines I/O programables, ofreciendo una conversión de I2C/SPI a serie (RS232/RS485) bidireccional.

http://www.arduino.org/images/products/details/ArduinoUNOWIFI_drawing2.jpg

Datasheet SC16IS750IBS: http://www.nxp.com/documents/data_sheet/SC16IS740_750_760.pdf

Arduino UNO wifi permite comunicar vía wifi con los sensores o actuadores montados en la placa. Es posible usarlo como cliente de una red wifi, como servidor para conectar otros clientes o crear una conexión wifi ad-hoc.

Arduino UNO wifi tiene precargado un sketch con un servidor REST (RestServer) que permite manejar el arduino desde un navegador simplemente conectando a la SSID del Arduino (Arduino-Uno-WiFi-xxxxxx) y entrando a la IP 192.168.240.1 para gestionarlo y usar los siguientes comandos para manejar los pines:

  • “/arduino/digital/13”     -> digitalRead(13)
  • “/arduino/digital/13/1”   -> digitalWrite(13, HIGH)
  • “/arduino/analog/2/123”   -> analogWrite(2, 123)
  • “/arduino/analog/2”       -> analogRead(2)
  • “/arduino/mode/13/input”  -> pinMode(13, INPUT)
  • “/arduino/mode/13/output” -> pinMode(13, OUTPUT)

Esquemático: http://download.arduino.org/products/UNOWIFI/Arduino-UNO-WiFi-V4_AF1.pdf

http://www.arduino.org/images/products/details/ArduinoUNOWIFI_drawing1.jpg

Programación

El Arduino UNO wifi puede programarse como un Arduino normal por el puerto serie o por wifi de la misma forma que el Arduino Yun

Para usar este Arduino tendremos que utilizar el IDE de arduino.org: http://www.arduino.org/downloads

Si al conectar el Arduino UNO wifi no lo reconoce Windows, instalar los drivers que hay en la carpeta drivers del IDE de Arduino.org

Después de alimentar Arduino UNO wifi, conectarse a la red Arduino-Uno-WiFi-xxxxxx y abrir el enlace http://192.168.240.1/

http://labs.arduino.org/dl1542?display&scale=0.7

Y desde la web podemos conectar Arduino UNO wifi a cualquier red wifi donde queramos integrarlo.

Más información en: http://www.arduino.org/learning/getting-started/getting-started-with-arduino-uno-wifi

NOTA: para programar por wifi, es necesario que el ordenador y el Arduino estén conectados a la misma red wifi y la placa está en modo STA.

Tutoriales Arduino UNO wifi:

La diferencia entre el Arduino UNO wifi y el wifi shield es que el wifi shield usa el SPI y este Arduino usa el I2C para conectarse al puerto serie del ESP8266 para mandar los comandos y transmitir por wifi.

La librería usada es la arduinowifi.h que aún no está documentada oficialmente, pero indagando en la librería “ArduinoWiFi.h” vemos que hace “extern ArduinoWifiClass Wifi; “, es decir crea el objeto Wifi de la clase ArduinoWifiClass y por eso podemos llamarlo desde el programa sin tener que instanciarlo previamente.

Código de la librería arduinowifi.h https://github.com/arduino-org/arduino-library-arduino-wifi

Es una librería para configuración y manejo del ESP8266 por el bus I2C.

El reference para la librería wifi es http://www.arduino.org/learning/reference/WiFi pero aunque es para el wifi shield, han diseñado la librería de Arduino Uno Wifi para que comparta nombre de las funciones y uso similar.

Al arrancar el Arduino UNO Wifi se inicia en modo AP y podemos conectarnos vía wifi para configurarlo y que luego se conecte a una red wifi.

Como cambiar el firmware: http://www.arduino.org/learning/tutorials/advanced-guides/how-to-change-the-firmware-on-an-arduino-uno-wifi

En el Arduino UNO wifi ciao está integrado y puede usarse la librería http://www.arduino.org/learning/reference/ciao-library.

Más información sobre CIAO: http://www.arduino.org/learning/tutorials/advanced-guides/content/ciao

Ejemplo con CIAO:

Ejercicio con Arduino UNO Wifi: basado en el ejercicio 27 del botón mejorado:  https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio27-Boton_Mejorado_UNO_WIFI

Comparar el código de:

Wifi Shield

El WiFi Shield de Arduino conecta Arduino a Internet de forma inalámbrica.

http://arduino.cc/en/uploads/Main/A000058_front_450.jpg

Toda la información sobre este Shield en :

Y los datasheet de los integrados:

Para conectarte al 32UC3: http://arduino.cc/en/Hacking/WiFiShield32USerial

Y la librería para manejar el shield en: http://arduino.cc/en/Reference/WiFi

Actualizar su firmware: http://arduino.cc/en/Hacking/WiFiShieldFirmwareUpgrading

http://arduino.cc/en/uploads/Main/ArduinoWiFiShieldPinUseDescribed_2.jpg

Wifi library:

Un proyecto hecho con Ethernet pasarlo a wifi con el wifi shield, simplemente se trata de cambiar las líneas de código de la parte de red de la librería ethernet a las equivalentes de la librería wifi.

Ejercicio 27. Botón mejorado Wifi.

Partiendo del ejercicio 27 del botón mejorado que enciende y apaga un led desde una web embebida en arduino con un ethernet shield, modificarlo para que funcione con un Arduino con el shield wifi.

Ejercicio con Ethernet: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio27-Boton_Mejorado

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio27-Boton_Mejorado_WIFI

WiFi Shield 101

Arduino WiFi Shield 101 es un shield potente para aplicaciones IoT con autenticación criptográfica, desarrollado con ATMEL, que conecta la placa Arduino a Internet de forma inalámbrica. La conexión a una red WiFi es simple, no se necesita ninguna configuración adicional además del SSID y la contraseña. El WiFi Shield 101 viene con una biblioteca fácil de usar que permite conectar la placa Arduino a Internet con pocas instrucciones. Como siempre, cada elemento de la plataforma – hardware, software y documentación está libremente disponible y de código abierto. Se basa en el módulo Atmel SmartConnect-WINC1500, compatible con la norma IEEE 802.11 b/g/n

Características:

  • Operating voltage both 3.3V and 5V (supplied from the host board)
  • Connection via: IEEE 802.11 b/g/n for up to 72 Mbps networks
  • Encryption types: WEP and WPA2 Personal
  • Support TLS 1.1 (SHA256)
  • Connection with Arduino or Genuino on SPI port
  • Onboard CryptoAuthentication by ATMEL

Web del producto https://www.arduino.cc/en/Main/ArduinoWiFiShield101

La de Adafruit https://www.adafruit.com/products/2891

El módulo wifi WINC1500 integrado es un controlador de red capaz de protocolos TCP y UDP. El Wifi Shield 101 también cuenta con un hardware de seguridad de cifrado / descifrado proporcionado por el chip ATCC508A CryptoAuthentication que es un método ultra seguro para proporcionar un acuerdo clave para el cifrado/descifrado, diseñado específicamente para el mercado de IoT.

Datasheet módulo wifi: http://www.atmel.com/devices/atwinc1500.aspx

El pin digital 7 se utiliza como un pin de handshake entre el shield WiFi 101 y Arduino, y no se debe utilizar. El pin digital 5 se utiliza como pin RESET entre el shield WiFi 101 yArduino, y no debe utilizarse.

Tener en cuenta que Uno + WiFi Shield 101 no es compatible con la biblioteca Serial de software. El WiFi Shield 101 usa una biblioteca que es muy compleja y ocupa más del 60% de la memoria disponible, dejando poco espacio para los sketches. Tener en cuenta que para un uso básico es compatible con el Uno, pero para proyectos complejos se recomienda usar el shield WiFi 101 con un Arduino / Genuino Zero, 101 o Mega 2560.

El Wifi Shield 101 se usa con la librería Wifi101 https://www.arduino.cc/en/Reference/WiFi101

Ejemplo sencillo por con el wifi shield 101: https://www.arduino.cc/en/Tutorial/Wifi101SimpleWebServerWiFi

Más información:

MKR1000

Es un nuevo Arduino con un microcontrolador que lleva integrado wifi y mucho más. El Arduino MKR1000 ha sido diseñado para ofrecer una solución práctica y económica buscando conectividad WiFi para gente con mínima experiencia en redes.

Este Arduino está basado en la MCU ATSAMW25 especialmente diseñado para proyectos IoT. Este SoC está compuesto de tres bloques principales:

  • SAMD21 Cortex-M0+ 32bit low power ARM MCU
  • WINC1500 low power 2.4GHz IEEE® 802.11 b/g/n Wi-Fi
  • ECC508 CryptoAuthentication

Microcontrolado ATSAMW25 http://www.atmel.com/devices/ATSAMW25.aspx

Este Arduino también incluye un circuito para cargar baterías Li-Po y utilizar el MKR1000 alimentándose con este tipo de baterías.

IMPORTANTE: Arduino MKR1000 funciona a 3.3V, el máximo voltaje que pueden tolerar los pines es de 3.3V y aplicar voltajes mayores podría dañar la placa. Mientras que una salida de 5V digital es posible, para una comunicación bidireccional de 5V es necesario level shifting.

Datasheet MCU: http://www.atmel.com/devices/ATSAMW25.aspx  

Esquemático: https://www.arduino.cc/en/uploads/Main/MKR1000-schematic.pdf

Pinout:

Web del producto https://www.arduino.cc/en/Main/ArduinoMKR1000

MKR1000 usa la librería wifi101: https://www.arduino.cc/en/Reference/WiFi101

Empezar con MKR1000

Getting Started https://www.arduino.cc/en/Guide/MKR1000

Para programar el MKR1000 es necesario añadir al IDE de Arduino soporte para esta placa, ya que el microcontrolador no es un AVR sino un ARM Cortex-M0 de 32 bits. SAMD Core.

En este enlace explica como añadir soporte (Arduino Cores) para nuevas placas: https://www.arduino.cc/en/Guide/Cores

El MKR1000 y Arduino Zero tienen unas librerías específicas por su microcontrolador:

Tutoriales MKR1000:

Proyectos interesantes:

MKR1000 como access point https://www.arduino.cc/en/Reference/WiFi101BeginAP (AP soft)

Ejercicio 39 NTP con MKR1000: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio39-NTP_MKR1000

Arduino Yun

Otra forma de añadir la funcionalidad de Wifi a Arduino es usar Arduino Yun que tiene wifi integrado y la librería bridge para conectar el microcontrolador con el microprocesador que tiene wifi integrado.

Arduino Yun: http://www.arduino.org/products/boards/4-arduino-boards/arduino-yun con MCU Atmel AVR de 8 bits ATmega32U4 y procesador MIPS Qualcomm Atheros AR9331 a 400 MHz con wifi integrado y SO linux Linino basado en OpenWRT y ethernet. Su principal característica es la capacidad de comunicar la MCU con el SO linux mediante un puerto serie interno. Esta placa no es 100% hardware libre, al no hacerse público la parte donde se encuentra el procesador Atheros AR9331. También hay disponible una version Yun mini para protoboards: http://www.arduino.org/products/boards/4-arduino-boards/arduino-yun-mini

Web del producto https://www.arduino.cc/en/Main/ArduinoBoardYun

Librería Bridge:

  • Bridge – Simple REST style calls to access analog and digital pins

Recientemente ha aparecido el Arduino Yun Shield que es una placa para añadir las funcionalidades del Arduino Yun a cualquier Arduino.

Web del producto https://www.arduino.cc/en/Main/ArduinoYunShield

Ejemplo de uso con Arduino Yun: https://github.com/jecrespo/Coche_AprendiendoArduino

Para comenzar una vez actualizado:

CC3000

Otro integrado wifi muy usado con arduino es el CC3000, pero que se ha quedado un poco obsoleto.

Chip CC3000:

Y la librería: https://github.com/sparkfun/SFE_CC3000_Library

Y un buen paso a paso para usar esta shield:

Y un ejemplo de uso práctico para hacer domótica en casa:

Otros Módulos Wifi

ESP32 el sucesor de ESP8266:

Soporte para el IDE de Arduino:

Primeras impresiones: https://www.sparkfun.com/news/2017

Tutorial http://www.instructables.com/id/Beginners-ESP32-Guide-to-Assembly-Testing/

Tabla comparativa: http://www.cnx-software.com/2016/03/25/esp8266-and-esp32-differences-in-one-single-table/

WiFi3 Click

Otro módulo derivado de esp8266:

NL6621 como alternativa al ESP8266

The NL6621 WiFi SOC is powered by a 160 MHz ARM Cortex-M3 with 448 KB of RAM, and everything else is integrated in the SOC. The module has 32 GPIOs, SPI, I2C, I2S digital audio, and most of the peripherals that you’d expect.

Anuncios

UART y USB en Arduino

Ya hemos visto  anteriormente que la UART o USART es el puerto serie hardware que todos los microcontroladores tienen al menos uno y la comunicación serie es la base de casi cualquiera de las comunicaciones de los microcontroladores.

El “Bus Universal en Serie”, en inglés: Universal Serial Bus más conocido por la sigla USB, es un bus estándar industrial que define los cables, conectores y protocolos usados en un bus para conectar, comunicar y proveer de alimentación eléctrica entre computadores, periféricos y dispositivos electrónicos.

Su desarrollo partió de un grupo de empresas del sector que buscaban unificar la forma de conectar periféricos a sus equipos, por aquella época poco compatibles entre si, entre las que estaban Intel, Microsoft, IBM, Compaq, DEC, NEC y Nortel. La primera especificación completa 1.0 se publicó en 1996, pero en 1998 con la especificación 1.1 comenzó a usarse de forma masiva.

La forma que tenemos de comunicar Arduino con el ordenador y para programarlo es mediante el USB. Casi todos los Arduinos y compatibles tienen un interfaz USB y sino usaremos un cable FTDI que nos hará la función de convertirnos el interfaz serie de la UART de Arduino a un interfaz USB. No confundir con lo visto anteriormente de uso del ICSP para programar, puesto que en ese caso programamos directamente la MCU sin necesidad de un bootloader.

El interfaz USB en el ordenador nos permite tener un puerto serie virtual que usamos para conectar con Arduino. Además de comunicación, USB es un interfaz de alimentación.

Físicamente un  USB tiene 4 pines:

Pin 1=> Alimentación con un voltaje de 5V DC
Pin 2 y 3 => Sirven para la transmisión de datos del BUS
Pin 4 = Masa o tierra

Aunque la mayoría de pc’s ya ofrecen protección interna se incorpora un fusible rearmable de intensidad máxima 500mA con la intención de proteger tanto la placa Arduino como el bus USB de sobrecargas y cortocircuitos. Si circula una intensidad mayor a 500mA por el bus USB (Intensidad máxima de funcionamiento), el fusible salta rompiendo la conexión de la alimentación. Podemos probar esto cortocircuitando GND y 5V en Arduino.

En el caso del USB el 0 y 1 se distingue por la diferencia de voltaje entre D+ y D-

Más información de USB:

Y para saber todo sobre USB ver “USB in a nutshell”: http://www.beyondlogic.org/usbnutshell/usb1.shtml

Para que un Arduino tenga un interfaz USB, necesita de un chip que ofrezca un interfaz USB, en algunos casos el propio microcontrolador ya dispone de ese interfaz y en otros caso utiliza un segundo microcontrolador con interfaz USB.

Tutorial USB:

Cuando conectamos un USB al ordenador, necesitamos un driver o trozo de software que nos  implemente la comunicación con el USB y nos monte un puerto serie virtual. Estos drivers deben estar certificados por http://www.usb.org/home y pagar las correspondientes licencias de uso. En el caso de Arduino los drivers ya están incluidos desde windows 8.1 y tienen su licencia de uso, por ese motivo cuando conectamos Arduino, automáticamente nos reconoce el dispositivo.

Todos los dispositivos USB tienen un USB vendor ID (VID) que identifica al fabricante y que es otorgado por http://www.usb.org/developers/vendor/ y un product ID (PID) que identifica el producto de ese vendedor. De esta forma es posible identificar un dispositivo USB por el ordenador. Más información: http://www.oshwa.org/2013/11/19/new-faq-on-usb-vendor-id-and-product-id/

Listado de VID:

Como sabemos hay dos Arduinos (arduino.cc y arduino.org) y por lo tanto hay dos VID para Arduino:

  • 2a03  dog hunter AG (arduino.org)
  • 2341  Arduino SA (arduino.cc)

Ejemplo de problemas con el uso de los drivers USB según el chip que lleve Arduino: http://blog.make-a-tronik.com/instalando-drivers-usb-serial-ch340g-para-arduino/

Cada dispositivo necesita tener unico product id y vendor id. Los VID son vendidos a los fabricantes y los PID son elegidos por cada compañía. Por ejemplo FTDI es el propietadior del VID #0403 y ellos dan a sus chips los IDs entre #0000 y #FFFF (65536 PIDs). Arduino tiene su propio VID y para el Arduino UNO el PID es el #0001

Si quisiéramos hacer cuenta propia placa compatible con Arduino hay varias opciones:

  • Usar un chip FTDI en lugar del 16u4 que ya tiene un VID
  • Si quieres hacer más de una placa y comercializar, tendrás que comprar un VID a usb.org en http://www.usb.org/developers/vendor/ y pagar la licencia
  • Si es para hacer una placa como experimento, puedes elegir un VID/PID que no interfiera con ninguno de los dispositivos del ordenador.
  • También es posible comprar licencias para un VID/PID de empresas que desarrollen dispositivos USB.

Sin embargo no es posible usar el VID de Arduino cuando quieres distribuir tu propia placa compatible con Arduino. Leer: http://electronics.stackexchange.com/questions/16665/arduino-uno-usb-vid-pid

En linux es posible ver mejor el proceso de reconocimiento de un dispositivo USB, leer: http://playground.arduino.cc/Linux/All

Tester de VID y PID basado en Arduino: https://learn.adafruit.com/simple-arduino-based-usb-vid-and-pid-tester/lets-do-this-thing

Para actualizar el firmware del Atmega16u2 que nos hace de interfaz entre el USB y el microcontrolador principal del Arduino UNO, seguir este procedimiento: http://arduino.cc/en/Hacking/DFUProgramming8U2.

Para comprobar la versión de firmware ir al gestor de dispositivos en Windows y buscar el Arduino, luego botón derecho y propiedades y buscar en driver details el VID, PID y el revision number.

La última versión del firmware está en https://github.com/arduino/Arduino/tree/master/hardware/arduino/avr/firmwares/atmegaxxu2 y usar un programador DFU como flip http://www.atmel.com/tools/flip.aspx para cargar el nuevo firmware.

Cuando usamos un Arduino basado en el microcontrolador ATmega32u4 como el leonardo, nos encontramos con que se hace una re-enumeración del puerto serie en el reset.

Puesto que estas placas no tienen un chip dedicado para manejar la comunicación serie y tienen un interfaz USB integrado, eso significa que el puerto serie es virtual, es una implementación software tanto en el ordenador como en la placa. Así como el ordenador crea una instancia del puerto serie cuando lo enchufas, el Arduino Leonardo crea una instancia serie cuando se ejecuta el bootloader. La placa es una instancia de un USB driver Connected Device Class (CDC), esto significa que cada vez que reseteas la placa, la conexión USB serie es rota y restablecida de nuevo. La placa desaparecerá de la lista de puertos serie y la lista se re-enumerará. Cualquier programa que tenga una conexión serie abierta con el Arduino Leonardo perderá su conexión. En el caso del Arduino cuando se resetea la placa se está reseteando el procesador principal ATmega328p sin cerrar la conexión USB que es mantenida por el microcontrolador secundario ATmega16u2. Esta diferencia de comportamiento tiene implicaciones en la carga y comunicación con el microcontrolador.

Los Arduinos basados en el ATmega32u4 aparecen también como un dispositivo genérico USB de teclado y ratón, y puede ser programado para controlar estos dispositivos usando las clases MouseKeyboard https://www.arduino.cc/en/Reference/MouseKeyboard, de forma que Arduino puede conportarse como un teclado u un ratón.

Más información: https://en.wikipedia.org/wiki/USB_communications_device_class

Cuando usamos un Arduino basado en el ATmega32u4 debemos usar la función if(serial) https://www.arduino.cc/en/Serial/IfSerial que indica si el puerto serie está preparado y en el caso del Leonardo, indica si la USB CDC serial connection está abierta. De esta  forma nos aseguramos que arranca el programa de Arduino cuando ya hay conexión entre el Arduino y el ordenador, sino podríamos perder los primeros envíos del Arduino al ordenador.

En el Arduino Leonardo, la clase Serial se refiere a la comunicación USB CDC, para la comunicación por TTL en los pines 0 y 1, se debe usar la clase Serial1.

En los Arduino basados en Atmega32u4 como el Arduino Leonardo usar:

void setup() { 
 //Initialize serial and wait for port to open:
  Serial.begin(9600); 
  while (!Serial) {
    ; // wait for serial port to connect. Needed for native USB
  }
} 

V_USB es una implementación software de un dispositivo USB para microcontroladores USB, haciendo posible construir hardware USB con casi cualquier MCU AVR, sin necesidad de un chip adicional. Se trata de un puerto USB software. Más información:

USART Arduino

La USART es el puerto serie de los microcontroladores que en el caso de Arduino están conectadas a los pines 0 y 1.

UART: http://es.wikipedia.org/wiki/Universal_Asynchronous_Receiver-Transmitter. Las funciones principales de la UART son de manejar las interrupciones de los dispositivos conectados al puerto serie y de convertir los datos en formato paralelo, transmitidos al bus de sistema, a datos en formato serie, para que puedan ser transmitidos a través de los puertos y viceversa.

Arduino se conecta a nuestro ordenador a través del puerto USB, pero el puerto USB se debe conectar al microcontrolador a través del puerto serie, por ello debemos entender cómo están relacionados el puerto USB y el puerto serie.

En un Arduino usamos el puerto USB para tres funciones: cargar nuestro programa ya compilado en la memoria flash, conectarnos al puerto Serie (UART) predefinido en cada Arduino para comunicarnos durante la ejecución del programa y adicionalmente alimentar a Arduino. Todo ello se puede hacer sin la necesidad del puerto USB, pero dada la facilidad de uso y que todos los ordenadores disponen de un puerto USB, nos facilita mucho hacer estas operaciones.

El puerto serie conectado al USB lo usamos como puerto de consola o puerto de debug.

La UART normalmente no genera o recibe directamente las señales externas entre los diferentes módulos del equipo. Usualmente se usan dispositivos de interfaz separados para convertir las señales de nivel lógico del UART hacia y desde los niveles de señalización externos, como puede ser RS232 o RS485. Una UART está normalmente en un circuito integrado usado para comunicaciones serie sobre un ordenador u otro dispositivo periférico.

Los microcontroladores como el ATmega328p tiene USART (Universal Syncronous Asyncronous Receiver Transmitter). Una USART puede trabajar igual que una UART, pero tiene la capacidad adicional de actuar como síncrona, esto significa que los datos van sincronizados con una señal de reloj. El reloj es recuperado desde los propios datos o enviado como como una señal externa. En ese caso no se usan los bits de start y stop, lo que permite una velocidad en baudios mayor al operar en modo síncrono porque la temporización de los bits tienen una cierta garantía y más bits pueden ser usados para datos en lugar de cabeceras.

Por el contrario la UART dispone de una señal de reloj interno y los datos en el bus pueden tener una temporización más irregular. Las UART requieren bits de start y stop y los datos asíncronos sólo se sincronizan con los bits de start y stop. La palabra asíncrono indica que la UART recupera la temporización de los caracteres desde el flujo de datos, usando el bit de start y el de stop para indicar el marco de cada carácter.

En la transmisión síncrona, la señal de reloj es recuperada de forma separada del stream de datos, esto mejora la eficiencia de la transmisión al haber más bits de datos en la transmisión. Una conexión asíncrona no manda nada cuando el dispositivo que transmite no tiene nada que mandar, pero un interfaz síncrono debe mandar caracteres para mantener el sincronismo entre emisor y receptor, normalmente el carácter ASCII “SYN” se encarga de rellenar este hueco y esto puede ser hecho automáticamente por el dispositivo transmisor.

Diferencia entre UART y USART:

Para saber todo sobre la USART de Arduino y la comunicación serie ver:

La configuración de la UART de los microcontroladores AVR necesita acceder a unos registros:

  • USART Band Rate Register – UBRRH &UBRRL
  • USART Control and Status Register A – UCSRA
  • USART Control and Status Register B – UCSRB
  • USART Control and Status Register C – UCSRC
  • USART Data Buffer Register – UDA

UART es un módulo de hardware que traduce los datos de paralelo a serial para ser transmitidos, las UARTs son usadas comúnmente en conjunto con estándares de comunicación como EIA, RS-232, RS-422 o RS-485. la designación “universal” indica que el formato de los datos y las velocidades de transmisión pueden ser configuradas.

UART es normalmente un circuito integrado individual usado para comunicaciones de un sistema de cómputo, son normalmente incluidas en microcontroladores. Actualmente estos circuitos pueden comunicarse de manera sincrónica y asincrónica y son conocidos como USART. Las funciones principales de chip UART son: manejar las interrupciones de los dispositivos conectados al puerto serie y convertir los datos en formato paralelo, transmitidos al bus de sistema, a datos en formato serie, para que puedan ser transmitidos a través de los puertos y viceversa.

La USART de Arduino es un puerto de comunicaciones muy versátil (UNIVERSAL SYNCHRONUS and ASYNCHRONUS serial RECEIVER and TRANSMITTER). Se puede configurar como síncrono o como asíncrono. Los pines de conexión de la placa UNO que se utilizan con este periférico interno son los siguientes:

  • PIN 0 (RXD)   – Puerto D del microcontrolador  PD0
  • PIN 1 (TXD)   – Puerto D del microcontrolador  PD1
  • PIN 13 (SCK) – Puerto B del microcontrolador  PB15 (Sólo para el modo síncrono)

Para poder realizar la comunicación, los dispositivos que se vayan a comunicar deben conocer varios aspectos de ésta. El primero es la velocidad a la que se va a realizar, es decir a qué baudios se va a realizar la transmisión.

La comunicación comienza con una señal de Start, seguida de los bits a enviar, y se pueden seleccionar entre 5 y 9 bits a mandar, después tenemos que seleccionar si va a haber un bit de paridad para comprobar errores y por último si tenemos uno o dos bits de Stop. Estos parámetros han de estar configurados de igual manera en los dos dispositivos que se van a comunicar.

En la placa UNO se utiliza la USART para que el Atmega328  se comunique con el otro microcontrolador ATmega16U2 que hace la interface al puerto USB. Los leds (TX LED y RX LED) parpadean para indicar actividad en el puerto serie a través de la USART.

El baudio es una unidad de medida utilizada en telecomunicaciones, que representa el número de símbolos por segundo en un medio de transmisión digital. Cada símbolo puede codificar 1 o más bits dependiendo del esquema de modulación, un bit siempre representa dos estados, por lo tanto baudios por segundo no siempre es equivalente a bits por segundo, los símbolos son las unidades de información estas se representan en bits, de manera que la tasa de bits será igual a la tasa de baudios sólo cuando sea 1 bit por símbolo.

Principales características del módulo USART, para mayor información ver datasheet del microcontrolador.

  • Full Duplex Operation (Independent Serial Receive and Transmit Registers)
  • Asynchronous or Synchronous Operation
  • Master or Slave Clocked Synchronous Operation
  • High Resolution Baud Rate Generator
  • Supports Serial Frames with 5, 6, 7, 8, or 9 Data bits and 1 or 2 Stop Bits.

Antes de continuar es importante resaltar que AVR UART y USART son totalmente compatibles en términos de registros, generación de tasa de baudios, operaciones de buffer y funcionalidad de buffer en el transmisor/receptor. A continuación un resumen rápido de la configuración del módulo UART.

  1. Establecer la velocidad de transmisión en emisor y receptor debe ser la misma para poder realizar la comunicación.
  2. Establecer el número de bits de datos que deben ser enviados.
  3. Mantener el buffer listo, si es una transmisión cargarlo con el dato a transmitir, si es una recepción almacenar el dato recibido para poder recibir mas datos sin perder información
  4. Por último habilitar el transmisor/receptor de acuerdo con el uso que se le desee dar.

En el caso de la transmisión sincrónica (USART) es necesario enviar el reloj del sistema el microcontrolador que envía esta señal se llama Maestro y el otro se denomina esclavo; para transmisión Asíncrona no se hace esta denominación para los transmisores/receptores.

La tasa de baudios se establece en el registro de 16 bits UBRR:

Más información: http://sistdig.wikidot.com/wiki:usart  

Más información sobre la USART del MCU ATmega328p, ver página 170 de http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf

Estándares de comunicación serie que definen las características eléctricas de los drivers y los receptores:

Explicación de la diferencia entre comunicación RS232 y TTL: RS-232 vs. TTL Serial Communication y http://www.atmel.com/Images/doc4322.pdf

USB to Serial en Arduino

Cuando conectamos Arduino a un ordenador mediante un cable USB, el ordenador instala un puerto serie virtual (COM) desde el cual podemos acceder al puerto serie de Arduino. Por este motivo es necesario instalar en el ordenador los drivers de interfaz USB de los microcontroladores de Atmel, esto se hace automáticamente al instalar el IDE de Arduino.

Arduino UNO como otros Arduinos disponen de microcontroladores que no tienen un interfaz USB incorporado, por lo tanto no se pueden conectar directamente a un Ordenador. Para ello usan un segundo microcontrolador que hace de intermediario, generalmente un ATmega16u2 que dispone de un interfaz USB. Este microcontrolador dispone de un firmware especial que facilita la carga del programa en la flash del Arduino y comunicar posteriormente por el USB.

Este firmware y su código se puede ver en https://github.com/arduino/Arduino/tree/master/hardware/arduino/avr/firmwares/atmegaxxu2/arduino-usbserial

Los microcontroladores de 8 bits mega AVR con interfaz USB están configurados de fábrica con un bootloader USB, este permite hacer un In-System Programming desde el interfaz USB sin eliminar la parte del sistema o sin una aplicación preprogramada y sin un un interfaz externo de programación.

USB DFU (Device Firmware Update) Bootloader: http://www.atmel.com/Images/doc7618.pdf

Más información del microcontrolador en: http://www.atmel.com/Images/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf

Niveles lógicos

Los niveles lógicos de los microcontroladores, son los niveles físicos de voltaje por los que se interpreta un microcontrolador un 1 y un 0. Niveles lógicos: https://en.wikipedia.org/wiki/Logic_level

En el caso de los ATmega AVR usan Tecnología TTL: http://es.wikipedia.org/wiki/Tecnolog%C3%ADa_TTL. Su tensión de alimentación característica se halla comprendida entre los 4,75V y los 5,25V (como se ve, un rango muy estrecho). Normalmente TTL trabaja con 5V. Los niveles lógicos vienen definidos por el rango de tensión comprendida entre 0,0V y 0,8V para el estado L (bajo) y los 2,2V y Vcc para el estado H (alto). La velocidad de transmisión entre los estados lógicos es su mejor base, si bien esta característica le hace aumentar su consumo siendo su mayor enemigo. Motivo por el cual han aparecido diferentes versiones de TTL como FAST, LS, S, etc y últimamente los CMOS: HC, HCT y HCTLS. En algunos casos puede alcanzar poco más de los 400 MHz.

TTL logic levels: https://learn.sparkfun.com/tutorials/logic-levels/ttl-logic-levels

Interesante nota de TI sobre como elegir la solución más adecuada para la conversión de niveles lógicos.

Niveles lógicos de Arduino: https://learn.sparkfun.com/tutorials/logic-levels/arduino-logic-levels

A medida que la tecnología avanza se crean dispositivos que necesitan menor consumo eléctrico y usan un menor voltaje de base (Vcc = 3.3 V en lugar de 5V). La técnica de fabricación es también diferente para dispositivos de 3.3V que permiten una huella menor y costes más pequeños. Para asegurar la compatibilidad de los dispositivos a 3.3V, se puede ver que la mayoría de los niveles de voltaje son casi los mismos para dispositivos de 3.3V y los de 5V. Un dispositivo de 3.3V puede interactuar con uno de 5V sin componentes adicionales. Por ejemplo un 1 lógico (HIGH) de un dispositivo de 3.3V será al menos 2.4V, esto sigue siendo interpretado como un 1 lógico en un dispositivo de 5V porque está por encima  de VIH que es 2V.

Sin embargo hay que tener en cuenta que un dispositivo de 3.3V es tolerante a señales de 5V, esta especificación es el “maximum input voltage” del dispositivo. En ciertos dispositivos de 3.3V, cualquier voltaje supuerior a 3.6V provocará un daño permanente en el chip, para evitar esto se puede usar un simple divisor de tensión (https://learn.sparkfun.com/tutorials/voltage-dividers) como una resistencia de 1KΩ y una de 2KΩ para bajar los 5V o usar un logic level shifter como https://www.sparkfun.com/products/12009

Voltaje 5V vs 3.3V http://jeelabs.org/2010/12/16/voltage-3-3-vs-5/

Cable FTDI

Cable FTDI es la forma más fácil de conectar el microcontrolador a un ordenador por USB. Consiste en un chip de conversión USB a Serie. Como ocurre con Arduino cuando lo conectamos, necesitamos los drivers de windows, cuando conectamos un cable FTDI también necesita sus drivers. Los driver FTDI vienen integrados en el IDE de Arduino.

FTDI es el fabricante más popular de chips conversores de USB a serie.

Drivers: https://web.archive.org/web/20141005060035/http://www.ftdichip.com/Drivers/VCP.htm

Productos de FTDI:

Chip FTDI:

FT231X tiene un buffer de comunicación mayor comparado con el FT232R. El FT231X tiene los niveles lógicos de 3.3 V y con entradas tolerantes a 5V. FTDI provee de drivers para los dispositivos USB incluyendo driver certificados para Windows, incluido Windows 10.

Interesante artículo sobre la comunicación serie con MCUs AVR: http://www.evilmadscientist.com/2009/basics-serial-communication-with-avr-microcontrollers/

Cable par comunicar con dispositivos de 3.3V: https://www.sparkfun.com/products/9873

Al comprar un cable FTDI hay que estar atento al pineado que no es el que usan los Arduino Ethernet y otros elementos, es posible que para conectarlo a un Arduino haya que intercambiar algunos pines. Este es el pineado correcto y los colores de los cables para un FTDI para Arduino:

ftdi

Existen en el mercado cable con otros colores y el pineado desordenado. Estos son los colores del cable y a que corresponde:

  • Red wire: 5V
  • Black wire: GND
  • White wire: RXD
  • Green wire: TXD
  • Yellow wire: RTS
  • Blue wire: CTS

Y el pineado bueno para arduino queda así:

ftdi luis

Los pines CTS y RTS es el flow control (control de flujo). El pin RTS es una salida y debe conectarse al pin de entrada CTS del otro dispositivo de la conexión a la UART.

  • Si el pin RTS está a 0, indica que puede aceptar más datos en el pin RXD
  • Si el pin RTS está a 1, indica que no puede aceptar más datos.

Los cambios de estado del pin RTS ocurren cuando el buffer del chip alcanza los últimos 32 bytes de espacio para dejar tiempo al dispositivo externo para que pare el envío de datos.

El pin CTS es una entrada y debe ser conectado a la salida RTS del dispositivo al otro extremo.

  • Si el pin CTS está a 0, indica que el dispositivo externo puede aceptar más datos y transmitirá por el pin TXD.
  • Si el pin CTS está a 1, indica que el dispositivo externo no puede aceptar más datos y parará la transmisión de datos en los siguientes 0 – 3 caracteres, dependiendo de lo que haya en el buffer de salida. Se debe tener en cuenta que al ser un dispositivo USB opera en base a paquetes y no a bytes.

CTS y RTS en RS232: https://en.wikipedia.org/wiki/RS-232#RTS.2C_CTS.2C_and_RTR

También en algunos dispositivos serie nos podemos encontrar con el pin DTR que es el control de flujo https://en.wikipedia.org/wiki/Data_Terminal_Ready. El DTR permite a Arduino hacer el auto reset cuando un nuevo sketch es cargado a la memoria flash. Esto permite cargar un sketch sin tener que pulsar el botón de reset.

Una de las líneas del hardware flow control (DTR) del ATmega8U2/16U2, están conectadas a la línea de reset del MCU ATmega328P a través de un condensador de 100 nanofaradios. Cuando esta línea se pone a 0 V, es capaz de resetear el MCU de Arduino. El IDE de Arduino usa esta capacidad para permitir cargar código a Arduino simplemente presionando el botón upload y hace que el el timeout del bootloader pueda ser menor y estar mejor coordinado con el comienzo de la carga del sketch.

Cuando se detecta un flujo de datos a través del interfaz USB conectando un ordenador al Arduino, automáticamente se resetea la MCU de Arduino y durante el siguiente medio segundo, el bootloader se ejecuta en Arduino. Como el bootloader está programado para ignorar datos malformados (cualquier cosa que no sea nuevo código de un sketch), interceptará los primeros bytes de los datos enviados a la placa tras la conexión. Por este motivo si un sketch está programado para recibir una comunicación por el puerto serie tras iniciarse, hay que asegurarse que el software que manda esa información espera al menos un segundo después de que se abra la conexión hasta que se manden los primeros datos.

Ojo con los chips FTDI falsos: http://hackaday.com/2016/02/01/ftdi-drivers-break-fake-chips-again/

Diferencia entre programadores AVR o adaptadores FTDI:

  • Los programadores AVR son más poderosos puesto que permite programar cualquier AVR, incluso los que vienen son bootloader de fábrica, pero también significa que es posible brickear el chip. Usando un programador se debe tener en cuenta que se sobreescribirá el bootloader.
  • Los adaptadores FTDI pueden enviar cualquier dato por puerto serie, incluyendo programar AVRs con un bootloader en ellos.

Más información de uso de un FTDI: https://cdn-learn.adafruit.com/downloads/pdf/ftdi-friend.pdf

Para las prácticas del curso disponemos de esta placa FTDI para programar tanto dispositivos a 5v como a 3.3 (los que habitualmente hay dispobles suelen ser a 5V), con selector de voltaje: http://www.tinyosshop.com/index.php?route=product/product&product_id=600, además este tiene DTR para conectar al reset y poder programar un arduino.

El FTDI usado usa el chip FT232 con características:

  • Interfaz estándar compatible con el tipo de controlador oficial de Arduino
  • Chipset FT232 original, funcionamiento estable, indicador de transmisión y recepción.
  • opción de fuente de alimentación 5V/3.3V
  • Chip de FT232R es la solución de un solo chip, con oscilador de cristal

FT232R tiene algunas funciones útiles:

Los microcontroladores AVR de Arduino para programarlos directamente por puerto serie, van a 5V, aunque si se usa un programador de 3.3v funciona porque el rx de arduino toma 0 cuando el voltaje es inferior a 0.7V y 1 cuando es superior a 2,4V.

Tal y como indica en las características del Arduino UNO en https://www.arduino.cc/en/main/arduinoBoardUno: “The Uno has a number of facilities for communicating with a computer, another Uno board, or other microcontrollers. The ATmega328 provides UART TTL (5V) serial communication, which is available on digital pins 0 (RX) and 1 (TX).”

Pero no solo se puede programar Arduino mediante el USB o por el puerto ICSP, sino que también es posible hacerlo mediante un cable FTDI conectado al puerto serie de Arduino. Para programar con el adaptador FTDI, necesitaré de un bootloader, con ICSP no.

Elementos HW del curso

Conocer el HW que vamos a usar en el curso. Cada alumno tiene su propio kit con el número de kit. Recordad este número porque se usará durante las prácticas.

Arduino UNO

Arduino UNO: https://www.arduino.cc/en/Main/ArduinoBoardUno

Arduino Ethernet Shield

Ethernet Shield: https://www.arduino.cc/en/Main/ArduinoEthernetShield

Arduino Starter Kit

Documentación Arduino Starter Kit: http://arduino.cc/en/Main/ArduinoStarterKit

Componentes:

Actualmente hay un Arduino Basic Kit https://www.arduino.cc/en/Main/ArduinoBasicKit que da acceso a project ignite https://projectignite.autodesk.com/shop/product/arduino-basic-kit/?pageTitle=Shop

Con este kit hay 15 proyectos muy interesantes propuestos:

  • GET TO KNOW YOUR TOOLS an introduction to the basics
  • SPACESHIP INTERFACE design the control panel for your starship
  • LOVE-O-METER measure how hot-blooded you are
  • COLOR MIXING LAMP produce any color with a lamp that uses light as an input
  • MOOD CUE clue people in to how you’re doing
  • LIGHT THEREMIN create a musical instrument you play by waving your hands
  • KEYBOARD INSTRUMENT play music and make some noise with this keyboard
  • DIGITAL HOURGLASS a light-up hourglass that can stop you from working too much
  • MOTORIZED PINWHEEL a colored wheel that will make your head spin
  • ZOETROPE create a mechanical animation you can play forward or reverse
  • CRYSTAL BALL a mystical tour to answer all your tough questions
  • KNOCK LOCK tap out the secret code to open the door
  • TOUCHY-FEEL LAMP a lamp that responds to your touch
  • TWEAK THE ARDUINO LOGO control your personal computer from your Arduino
  • HACKING BUTTONS create a master control for all your devices!

En esta lista de youtube hay varios video tutoriales de los proyecto propuestos por el Arduino Starter Kit: https://www.youtube.com/playlist?list=PLT6rF_I5kknPf2qlVFlvH47qHvqvzkknd

Otros módulos

Cómo leer un datasheet: http://rufianenlared.com/como-leer-datasheet/

Ejercicio: Medir valor de un Condensador

Ver: https://www.arduino.cc/en/Tutorial/CapacitanceMeter

Esquema de conexión:

¡ATENCIÓN! Poner un condensador de 100uF y asegurarse de poner correctamente la polaridad. Símbolo – (patilla corta) a masa.

La resistencia R tiene un valor de 10Kohms

Explicación del sketch:

  • Configurar el pin de descarga a INPUT (alta impedancia de modo que no pueda descargar el condensador). Pin 11.
  • Registre el tiempo de inicio con millis ()
  • Establecer el pin de carga en OUTPUT y ponerlo a HIGH. Pin 13.
  • Compruebe la tensión repetidamente en un bucle hasta que llegue a 63.2% de la tensión total.
  • Después de cargar, restar el tiempo actual de la hora de inicio para averiguar cuánto tiempo le costó al condensador para cargar.
  • Dividir el Tiempo en segundos por la resistencia de carga en ohmios para encontrar la Capacitancia.
  • Imprimir por serial el valor con serial.print
  • Descargue el condensador. Para hacer esto:
    • Establezca el pin de carga en la entrada
    • Configurar el de descarga en OUTPUT y haga que sea LOW
    • Leer el voltaje para asegurarse de que el condensador está completamente descargado
    • Loop y hacerlo de nuevo

Para asegurarse que el condensador está descargado, asegurarse de quitar alimentación cuando lo indique el sketch por pantalla.

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio57-Medidor_Condensadores

USB to Serial

Arduino se conecta a nuestro ordenador a través del puerto USB, pero el puerto USB se debe conectar al microcontrolador a través del puerto serie, por ello debemos entender como están relacionados el puerto USB y el puerto serie.

En un Arduino usamos el puerto USB para dos funciones: cargar nuestro programa ya compilado en la memoria flash y conectarnos al puerto Serie (UART) predefinido en cada Arduino para comunicarnos durante la ejecución del programa. Ambas cosas se puede hacer sin la necesidad del puerto USB, pero dada la facilidad de uso y que todos los ordenadores disponen de un puerto USB, nos facilita mucho hacer estas dos operaciones.

El puerto serie conectado al USB lo usamos como puerto de consola o puerto de debug.

UART: http://es.wikipedia.org/wiki/Universal_Asynchronous_Receiver-Transmitter

Las funciones principales de chip UART son de manejar las interrupciones de los dispositivos conectados al puerto serie y de convertir los datos en formato paralelo, transmitidos al bus de sistema, a datos en formato serie, para que puedan ser transmitidos a través de los puertos y viceversa.

El UART normalmente no genera directamente o recibe las señales externas entre los diferentes módulos del equipo. Usualmente se usan dispositivos de interfaz separados para convertir las señales de nivel lógico del UART hacia y desde los niveles de señalización externos.

RS232 – http://en.wikipedia.org/wiki/RS-232

Tecnología TTL: http://es.wikipedia.org/wiki/Tecnolog%C3%ADa_TTL

Cable FTDI: es la forma más fácil de conectar el microcontrolador a un ordenador por USB. Consiste en un chip de conversión USB a Serie. Como ocurre con Arduino cuando lo conectamos, necesitamos los drivers de windows, cuando conectamos un cable FTDI también necesita sus drivers. Los driver FTDI vienen integrados en el IDE de Arduino.

Drivers:https://web.archive.org/web/20141005060035/http://www.ftdichip.com/Drivers/VCP.htm

Productos de FTDI:

Explicación de la diferencia entre comunicación RS232 y TTL: RS-232 vs. TTL Serial Communication y http://www.atmel.com/Images/doc4322.pdf

Como usar RS232 con Arduino: necesito un driver receptor para poder usarlo: http://arduino.cc/en/pmwiki.php?n=Tutorial/ArduinoSoftwareRS232

Y si vamos a lo fácil: https://www.sparkfun.com/products/13029