Archivo de la etiqueta: Funciones

Iniciación a Arduino en 3 Directos de YouTube

En estos tres directos hechos en marzo de 2020 hago una iniciación a Arduino.

Primer Directo

Hablo de:

Enlaces del vídeo:

Segundo Directo

Hablo de:

  • Uso de una pantalla LCD con Arduino
  • Instalar una librería
  • Funciones Arduino
  • Debug de un Sketch de Arduino

Enlaces del vídeo:

Tercer Directo

Hablo de:

Enlaces del Vídeo:

Programación Básica en Python

Introducción a Python

Python es un lenguaje interpretado, es decir, no requiere del proceso de escribir / compilar / volcar. Simplemente escribir la instrucción y listo el ordenador la “interpreta” o sea ejecuta sobre la marcha sin más complicación.

Python también es:

Esto hace que los lenguajes interpretados sean más fáciles de aprender porque nos parecen más naturales, y aunque el programa corre más lento que en los compilados, pero con la potencia actual o es tan importante.

Python no es un lenguaje diseñado para ser fácil comprometiendo su potencia. Muy al contrario la potencia y capacidad de cálculo que muestra suelen sorprender a la gente acostumbrada a otros lenguajes.

Para quienes vengáis de Arduino, C++ es un lenguaje compilado, esto significa que el compilador lee lo escrito en una primera pasada y después compila, es decir traduce a un lenguaje propio del micro de Arduino qué es lo que se vuelca y ejecuta la placa que usemos.

Hay dos versiones de Python 2 y 3, pero la versión 2 ya no tienes soporte desde el 1 de enero de 2020, aunque en Raspbian disponemos de las dos versiones. El inconveniente es que hay librerías que aún se mantienen en Python 2.

Para iniciar python se puede hacer desde consola:

  • python
  • python3

O usar el entorno gráfico con IDLE. IDLE significa Integrated DeveLopment Environment, o Integrated Development and Learning Environment.

Para instalarlo ejecutar: sudo apt-get install idle3

Dentro de la consola ya es posible ejecutar comandos.

Otra opción es usar el Thonny Python IDE incluido en Raspbian: https://thonny.org/

Práctica: Ejecutar los comandos:

  • 3.8 + 7
  • 2 * (3+5) / 4
  • “Hola.”
  • x=3
  • H=”Buenos dias”
  • print(x)
  • print(h)
  • print(H)
  • print(x,H)
  • 123 ** 1234

Python puede con grandes números mientras le quede memoria RAM, pero tu Raspberry puede quedarse un tanto bloqueada mientras calcula.

El resumen es que Python tiene una precisión ilimitadamente grande en los enteros mientras tenga recursos disponibles, un detalle sorprendente para cualquiera que este acostumbrado a programar en otros lenguajes, y una de las razones por las que Python se ha convertido en lenguaje de facto para la ciencia y especialmente para la investigaciones numéricas.

Práctica: crear un fichero llamado hello.py que saque por pantalla el texto “Hola Mundo” desde consola conectado por ssh y ejecutarlo.

Más información: Introducción a Python.

Variables y Tipos de Datos en Python

Una variable es algo parecido a un contenedor o cajón con un nombre. Una cosa es el nombre del cajón y otra su contenido y conviene entender desde ya la diferencia.

Las variables pueden tomar distintos valores e ir cambiandolo en función del programa, de la misma manera que un cajón puede ir variando su contenido sin que se mueva de sitio.

En Python no es necesario definir las variables antes de usarlas, a diferencia de C y similares. Basta con que la declares asignándole un valor.

Por ejemplo escribe directamente:

  • base = 86
  • iva = base * 0.21
  • total = base + iva
  • print (total)
  • print(base, iva, total)
  • base = input (“Dame el precio del artículo, por favor : “)
  • print(base + base * 0.21)
  • type(base)
  • print (int(base) + int(base) * 0.21)
  • iva = float(base) * 0.21
  • print (int(base) +iva)

Práctica: Hacer un programa llamado iva.py y que pida el valor del articulo y devuelva el valor con iva.

Más información: Variables y tipos en Python.

En Python existen 4 tipos diferentes de variables numéricas:

  • int Número entero con precisión fija (ℤ).
  • long Número entero en caso de sobrepasar el tamaño de un int.
  • float Número en coma flotante de doble precisión (ℝ).
  • complex Número complejo (parte real + j parte imaginaria) (ℂ)

Una función muy útil, que sirve para conocer el tipo de una variable es: type()

El tipo booleano es un tipo de variable que sólo puede contener dos valores: True y False.

Se definen como caracteres entre comillas simples ‘ o dobles “.

Tipo listas

Se definen poniendo el contenido de la lista entre corchetes, separando cada uno de los elementos mediante una coma. Cada posición de la lista puede contener elementos de distinto tipo. Además, las listas son mutables, es decir, sus elementos pueden ser modificados. En Python los elementos de una lista se numeran desde 0 hasta longitud−1.Hay numerosas funciones que pueden aplicarse a una lista.

Para acceder al elemento de una lista se pone el nombre de la lista y a continuación el índice al que queremos acceder entre corchetes(si ponemos el índice con signo negativo empezará por el final de la lista). Para acceder a un rango dentro de una lista tenemos diferentes opciones:

  • Desde el inicio tomar a elementos (no incluye a):
    lista[:a]
  • Desde la posición a (incluida) tomar todos los elementos hasta el final
    lista[a:]
  • Tomar los elementos desde a hasta b (sin incluir b)
    lista[a:b]

Las listas tienen asociadas una serie de métodos que permiten una gran variedad de operaciones sobre ellas:

  • .append(), añade un elemento al final de la lista.
  • .insert(), se usa para insertar un elemento en el índice asignado.
  • .pop(), elimina y devuelve el valor en la posición del índice asignado.
  • .reverse(), reordena la lista de forma reversa.
  • .sort(), reordena la lista de forma ascendente.

Más en listas: https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Ejercicio: probar estos ejemplos de listas 

Tipo tuplas

Las tuplas son similares a las listas, se definen con paréntesis en vez de corchetes. Tienen la peculiaridad de ser inmutables.

Tipo diccionarios

Los diccionarios definen una relación uno a uno entre claves y valores y son mutables. Se definen colocando una lista separada por comas de pares clave:valor. Una vez definido, podemos acceder al valor asociado a una clave buscando por la clave. Además, podemos buscar si una determinada clave existe o no en nuestro diccionario.

Los diccionarios se definen con {}

  • .keys()
  • .values()
  • .items() – devuelve una lista de tuplas clave – valor del diccionario

zip me permite coger dos listas y hacer un diccionario: diccionario = dict(zip(lista_claves,lista_valores))

del(diccionario[‘clave’]) – borra la entrada de un diccionario

Ojo, al copiar un diccionario con ciudades_2 = ciudades, no creo una copia sino dos variables que apuntan a un mismo objeto.

id(diccionario) – me devuelve el número del puntero al diccionario

ciudades_2 = ciudades.copy() -> así tengo una copia independiente de un diccionario

Ejercicio: ejecucar algunos ejemplos con diccionarios https://recursospython.com/guias-y-manuales/diccionarios/

Ver:

Operadores aritméticos

Las diferentes operaciones aritméticas en Python son los siguientes:

  • +
  • ∗∗  – elevado
  • / – división entera
  • // – división
  • %

Operadores de asignación

Los diferentes operadores de asignación en Python son los siguientes:

  • =: Asigna a la variable del lado derecho aquello que pongamos en el lado derecho.
  • +=: Suma a la variable del lado izquierdo la variable del lado derecho.
  • −=: Resta a la variable del lado izquierdo la variable del lado derecho.
  • ∗=: Multiplica la variable del lado izquierdo por la variable del lado derecho.
  • /=: Divide la variable del lado izquierdo por la variable del lado derecho.
  • ∗∗=: Eleva la variable de la izquierda a la potencia de la variable de la derecha.
  • //=: División entera de la variable de la izquierda entre la de la derecha.
  • %=: Resto de la división de la variable de la izquierda entre la de la derecha.

Operadores relacionales

Los operadores relacionales de Python son:

  • ==: Evalúa que los valores sean iguales.
  • !=: Evalúa que los valores sean distintos.
  • <: Evalúa que el valor de la izquierda sea menor que el de la derecha.
  • >: Evalúa que el valor de la izquierda sea mayor que el de la derecha.
  • <=: Evalúa que el valor de la izquierda sea menor o igual que el de la derecha.
  • >=: Evalúa que el valor de la izquierda sea mayor o igual que el de la derecha.
  • not: negación de una variable booleana

Librerías

Python es un lenguaje pensado para ser ampliado con lo necesario y hace tiempo que se ha convertido en el pilar de la investigación en numerosos campos de ciencia y tecnología

Disponemos de infinidad de librerías que podemos usar llamando a la clausula import

La librería estándar de python incluye muchos módulos: https://docs.python.org/dev/library/index.html

Ejecutar:

  • from fractions import *
  • F1 = Fraction(2,3)
  • F2 = Fraction(3,4
  • print(F1, F2)
  • print (F1 + F2)
  • print (F1 * F2)
  • print (F1 / F2)
  • import math
  • math.factorial(4)
  • math.factorial(432)
  • import numpy
  • a = numpy.array(([1,2,3],[4,5,6],[7,8,9]))
  • print (a)
  • print (a * a)
  • from matplotlib import pyplot
  • pip install matplot lib
  • x = numpy.linspace(0, 2 * numpy.pi, 100)
  • y = numpy.sin(x)
  • pyplot.plot(x, y)
  • pyplot.show()

NumPy es una extensión de Python, que le agrega mayor soporte para vectores y matrices, constituyendo una biblioteca de funciones matemáticas de alto nivel para operar con esos vectores o matrices.

Estos módulos externos que podemos descargar e importar a nuestros programas reciben en Python el nombre de packages. Existen packages que podemos importar, más o menos estándar para lo que se te ocurra.

Python Package Index: https://pypi.org/

Más información: Imports en Python

Módulos en Python: http://research.iac.es/sieinvens/python-course/source/modulos.html

Módulos y paquetes: https://www.learnpython.org/en/Modules_and_Packages 

Diferencia entre módulos, Paquetes y librerías

Standar Library: https://docs.python.org/3/library/ 

Métodos de instalación de Paquetes:

Como instalar y usar pip: https://pip.pypa.io/en/latest/installing.html

Por defecto estos gestores de paquetes buscan en https://pypi.org/

El Python Package Index o PyPI es el repositorio de software oficial para aplicaciones de terceros en el lenguaje de programación Python. Los desarrolladores de Python pretenden que sea un catálogo exhaustivo de todos los paquetes de Python escritos en código abierto. https://es.wikipedia.org/wiki/%C3%8Dndice_de_paquetes_de_Python

Para ver la ruta de los paquetes:

  • import sys
  •  print (‘\n’.join(sys.path))

Para ver los módulos instalados: pip freeze o pip list

Para actualizar ejecutar: pip install –upgrade pip

Instalar paquetes de Python: https://www.raspberrypi.org/documentation/linux/software/python.md

Sentencias condicionales

Imaginemos que queremos crear un sistema automático de riego en nuestra casa, de forma que cuando la lectura de un sensor de humedad sea menor que un cierto valor, encienda el sistema y que si la lectura es mayor que un cierto valor, lo apague. Con las herramientas que tenemos hasta ahora, esto no sería posible, para esto utilizamos la sentencia if/elif/else, que tiene la siguiente estructura:

if <expresion_booleana>:   # Solo si la condicion booleana es True, 

    bloque codigo          # el bloque de código se ejecuta

    …

elif <expresion_booleana>: # No es necesario, añade condiciones extra al conjunto.

    bloque codigo          # Se puede poner tantas como se necesiten.

    …

else:                      # No se necesario. Se ejecuta solo si

    bloque codigo          # todas las condiciones anteriores son falsas.         

    …

Nota: Es importante saber la importancia de la indentación en Python. Cuando usemos sentencias que acaben en “:” (if, for…) las líneas que estén dentro de esta sentencia irán después de un tabulador o 4 espacio, como se muestra en los ejemplos.

Ejemplo:

num = float(input(“Enter a number: “))

if num >= 0:

    if num == 0:

        print(“Zero”)

    else:

        print(“Positive number”)

else:

    print(“Negative number”)

Más información: El tipo Bool y sus operaciones.

Sentencias bucle

Anteriormente hemos visto el tipo de variable lista. Estas contenían una cierta cantidad de elementos. Imaginemos que tenemos una lista de enteros y queremos mostrar por pantalla los elementos que contiene que sean mayores que 5. Para esto, entre otras cosas, tenemos sentencias bucle.

En Python existen dos tipos estructuras de bucles:

  • Bucles for
  • Bucles while

La sintaxis de un bucle for es:

for <variable_sin_definir> in <Iterable>: # El bloque se ejecuta tantas veces 

    bloque codigo                         # como elementos tiene el iterable

    …

El blucle ejecuta un bloque de código tantas veces como esté definido. El número de veces que se recorre el bucle es equivalente al número de elementos en el iterable que se usa. La variable que se usa toma como valores los elementos del iterable de forma secuencial, un valor por cada iteración.

Los bucles for son una gran herramienta para recorrer todos los elementos de una colección.

Ejemplo:

fruits = [“apple”, “banana”, “cherry”]

for x in fruits:

  print(x)

Ejemplo:

for x in range(6):

  print(x)

else:

  print(“Finally finished!”)

La sintaxis de los bucles while es:

while <condicion_boolena>:   # El bloque se ejecuta hasta que la condición es falsa.

    bloque codigo            # Antes de ejecutar asegurarse que se va a salir.

    …

El bucle while se ejecuta de forma indefinida hasta que la condición después del while sea falsa. Por lo tanto es necesario realizar un cambio dentro del bucle que finalmente hará que se vuelva la condición False.

Adicionalmente existen un par de comandos dentro de Python que sirven para tener más control sobre los bucles:

  • continue. El intérprete cuando lo lee termina de ejecutar la presente iteración y pasa a la siguiente iteración.
  • break . El intérprete cuando lo lee termina la ejecución del bucle, continuando la ejecución de las siguientes líneas.

Ejemplo:

i = 1

while i < 6:

  print(i)

  if i == 3:

    break

  i += 1

Más información: Mas sobre Python for y While.

Iteradores

En Python existen diferentes estructuras que son conjuntos de elementos, son las llamadas colecciones. Este tipo de estructuras son iterables, es decir, se pueden recorrer elemento por elemento. Como veíamos antes, el bucle for itera sobre un iterable, por lo que utilizamos esta sentencia para recorrerlos. Algunos tipos de variable que son iterables son:

  • Cadena de caracteres (str)
  • Lista (list)
  • Tupla (tuple)
  • Diccionario (dict)

Además, muchas veces queremos repetir un bucle un número determinado de veces. Para esto puede ser útil la función range(n). Esta función genera un iterable que va desde 0 hasta n-1.

Más información:Iteraciones for en Python 3.

Funciones

Es muy posible que a lo largo de un programa necesitemos calcular el factorial de un número. Podemos escribir el código necesario para calcularlo en cada punto que lo necesitamos, o crear una función que podamos llamar desde cualquier punto y nos calcule el factorial de un número. 

La sintaxis para definir una función en Python es la siguiente:

def nombre_funcion(<parametro1>, <parametro2>, …): # Los parametros son opcionales

    Bloque codigo

    …

    return <valor_a_devolver> # El comando es opcional (puede devolver varios valores)

Los parámetros son las variables que se definen dentro del paréntesis, separados por comas. Son opcionales y sirven para pasarle valores a la función. Son opcionales una vez definimos la función, pero si la función está definida con n argumentos, tendremos que informarlos.

Adicionalmente puede introducirse una sentencia return que termina la ejecución de la función y devuelve el valor/objeto que está colocado justo después.

Los nombres de las funciones sigue el mismo convenio que el de las variables.

Para llamar a una función, como hemos visto antes, tenemos que escribir el nombre de la función y añadir entre paréntesis los argumentos que la funció necesita. Aunque la función no necesite argumentos, tenemos que escribir los paréntesis.

Ejemplo:

def escribe_media(x, y):

    media = (x + y) / 2

    print(f”La media de {x} y {y} es: {media}”)

    return

a = 3

b = 5

escribe_media(a, b)

print(“Programa terminado”)

Código de python (ejemplos y snippets):

Ejemplos de Python aplicados a la Industria

Ejemplos:

Ejercicio: Recoger datos meteorológicos de aemet

Aemet Open data: http://www.aemet.es/es/datos_abiertos/AEMET_OpenData

Obtener Api Key: https://opendata.aemet.es/centrodedescargas/inicio

Documentación de la API: https://opendata.aemet.es/dist/index.html?

Ejemplo programa Python: https://opendata.aemet.es/centrodedescargas/ejemProgramas?

Crear un ejemplo usando la librería requests: https://pypi.org/project/requests/ y ejecutar para logroño.

Código: https://github.com/jecrespo/Aprendiendo-RaspberryPi/blob/master/Ejercicio03-Aemet/aemet.py

Librería: https://pypi.org/project/python-aemet/

No hay librería de AEMET en Node-RED, pero podemos hacer las peticiones a la web como se ha hecho en python.

Prácticas: Funciones Definidas por Usuario

Montaje Arduino UNO:

Montaje Wemos:

Ejercicio15 – Funciones

Hacer un menú interactivo con Arduino. Con todo lo visto anteriormente, hacer un ejemplo de un menú interactivo donde se dan 4 opciones y pulsando cada una de ellas se ejecuta una acción concreta. Si el valor pulsado no es ninguna de las opciones avisar y volver a mostrar el menú hasta que se pulse una opción correcta. Usar funciones para cada una de las opciones.

Opciones:

  • 1 – Encender led siguiente (paso por referencia la posición del led)
  • 2 – Sacar por pantalla el LCD que está encendido
  • 3 – Sonar el buzzer 5 segundos
  • 4 – Fin (entra en un bucle infinito y no sale)

Solución: https://codeshare.io/5NYRvm

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio15-Funciones

Ejercicio16 – Función Detecta flanco

Señales digitales:

Hacer una función que detecte flancos ascendentes y otras flancos descendentes, para ser reutilizada en otros proyectos.

Unificar estas dos funciones en una única función llamada detectaFlanco() donde le paso el pin y devuelve 1 si es flanco ascendente, -1 si es flanco descendente y 0 si no hay cambio de estado.

Ponerla en un ejemplo con alguno de los botones, usando este loop:

 
void loop() {
  int flanco = detectaFlanco(PIN_BOTON_A);
  if (flanco == 1)
    Serial.println("flanco ascendente");
  if (flanco == -1)
    Serial.println("flanco descendente");
}

Solución: https://codeshare.io/amkrV1

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio16-Funcion_Detecta_Flanco

Ejercicio17 – Función Detecta flanco dos pines

Para ejercicio detecta flanco, probar la función con los dos botones en los pines 2 y 3. La función detecta flanco solo funciona con un pulsador, pero cuando se intenta usar con dos pulsadores ya no funciona. Comprobar porqué.

Solución: https://codeshare.io/5NYrqr

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio17-Funcion_Detecta_Flanco_2Pines

La función para detectar flanco es la base para luego entender las clases y objetos y luego las librerías.

La solución es crear un objeto detecta flanco, para ello crear una clase y se puede distribuir mediante una librería como https://github.com/jecrespo/Detecta_Flanco_Libreria que se puede descargar desde https://github.com/jecrespo/Detecta_Flanco_Libreria/releases/tag/Version_1.0:

#include <DetectaFlanco.h>
#define PIN_BOTON_A 2
#define PIN_BOTON_B 3

DetectaFlanco df1(PIN_BOTON_A);
DetectaFlanco df2(PIN_BOTON_B);

void setup() {
  Serial.begin(9600);
  df1.inicio(INPUT_PULLUP);
  df2.inicio(INPUT);
}

void loop() {
  // put your main code here, to run repeatedly:
  int flanco1 = df1.comprueba();
  int flanco2 = df2.comprueba();

  if (flanco1 == 1)
    Serial.println("Flanco asc A");

  if (flanco1 == -1)
    Serial.println("Flanco desc A");

  if (flanco2 == 1)
    Serial.println("Flanco asc B");

  if (flanco2 == -1)
    Serial.println("Flanco asc B");

  delay(50); //Evitar rebotes
}

Ejercicio18 – Dado Digital

Usando las funciones de números aleatorios hacer un dado digital que genere un número aleatorio entre 1 y 6 y encienda un led aleatorio cada vez que se pulse el botón A. Usar el montaje del Wemos D1 mini

Usar la función de detección de flanco hecha en el anterior ejercicio.

Random Numbers

  • randomSeed() – Inicializa el generador de número pseudo-aleatorios
  • random() – Genera números pseudo-aleatorios

Paso 1 – Generar un valor aleatorio entre 1 y 6 al pulsar el botón

Paso 2 – Hacer girar el anillo led haciendo el efecto y que baje la velocidad

Paso 2 – Dejar fijo el nuevo número aleatorio

Solución: https://codeshare.io/anmypv

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio18-Dado

Funciones Definidas por Usuario Avanzado

Una función es un bloque de código que tiene un nombre y un conjunto de instrucciones que son ejecutadas cuando se llama a la función. Son funciones setup() y loop() de las que ya se ha hablado.

Una función tiene un nombre y un conjunto de instrucciones que son ejecutadas cuando se llama a la función. Son funciones setup() y loop() de las que ya se ha hablado anteriormente.

Las funciones de usuario pueden ser escritas para realizar tareas repetitivas y para reducir el tamaño de un programa. Segmentar el código en funciones permite crear piezas de código que hacen una determinada tarea y volver al área del código desde la que han sido llamadas.

Una función puede llamarse múltiples veces e incluso llamarse a sí misma (función recurrente). Las funciones pueden recibir datos desde afuera al ser llamadas a través de los parámetros y puede entregar un resultado.

Las funciones se declaran asociadas a un tipo de valor. Este valor será el que devolverá la función, por ejemplo ‘int’ se utilizará cuando la función devuelva un dato numérico de tipo entero. Si la función no devuelve ningún valor entonces se colocará delante la palabra “void”, que significa “función vacía”

Sintaxis:

 
tipo nombreFunción (parámetros) {
   instrucciones;
}

Para llamar a una función, simplemente:

 
nombreFunción(parámetros);

En una función que devuelve un valor siempre debe tener la instrucción Return, este termina una función y devuelve un valor a quien ha llamado a la función: http://arduino.cc/en/Reference/Return

Si se define una función y no ponemos return el valor devuelto es cero. No da error de compilación.

Ventajas del uso de funciones:

  • Ayuda a tener organizado el código.
  • Una función codifica una tarea en un lugar de nuestro sketch, así que la función solo debe ser pensada una sola vez.
  • Reduce la probabilidad de errores al modificar el código.
  • Hacen que el tamaño del sketch sea menor porque el código de la función es reutilizado.
  • Facilita la lectura del código.
  • Hace más sencillo reutilizar código en otros sketches.

Más información: http://arduino.cc/en/Reference/FunctionDeclaration

Nombres de funciones

Generalmente los nombres de las funciones deben ser en minúscula, con las palabras separadas por un guión bajo, aplicándose éstos tanto como sea necesario para mejorar la legibilidad.

“mixedCase” (primera palabra en minúscula) es aceptado únicamente en contextos en donde éste es el estilo predominante con el objetivo de mantener la compatibilidad con versiones anteriores.

En el caso de las clases, los nombres deben utilizar la convención “CapWords” (palabras que comienzan con mayúsculas).

Las funciones en Arduino pueden estar dentro del mismo fichero .ino o en otro fichero con extensión .ino dentro del directorio del sketch.

Paso por Valor y Paso por Referencia

Hasta ahora siempre hemos declarado los parámetros de nuestras funciones del mismo modo. Sin embargo, éste no es el único modo que existe para pasar parámetros.

La forma en que hemos declarado y pasado los parámetros de las funciones hasta ahora es la que normalmente se conoce como “por valor“. Esto quiere decir que cuando el control pasa a la función, los valores de los parámetros en la llamada se copian a “objetos” locales de la función, estos “objetos” son de hecho los propios parámetros.

 
int funcion(int n, int m) {
  n = n + 2;
  m = m - 5;
  return n+m;
}

int a = 10;
int b = 20;

Serial.println(funcion(a,b));
Serial.println(funcion(10,20));

Empezamos haciendo a = 10 y b = 20, después llamamos a la función “funcion” con las objetos a y b como parámetros. Dentro de “funcion” esos parámetros se llaman n y m, y sus valores son modificados. Sin embargo al retornar al programa que lo llama, a y b conservan sus valores originales. Lo que pasamos no son los objetos a y b, sino que copiamos sus valores a los objetos n y m. Es lo mismo que hacer funcion(10,20), cuando llamamos a la función con parámetros constantes. Si los parámetros por valor no funcionasen así, no sería posible llamar a una función con valores constantes o literales.

Las referencias sirven para definir “alias” o nombres alternativos para un mismo objeto. Para ello se usa el operador de referencia (&).

Por ejemplo: 

 
int a;
int& r = a;  //Referencia a entero y debe siempre inicializarse

a = 10;
Serial.println(r);

En este ejemplo los identificadores a y r se refieren al mismo objeto, cualquier cambio en una de ellos se produce en el otro, ya que son, de hecho, el mismo objeto. El compilador mantiene una tabla en la que se hace corresponder una dirección de memoria para cada identificador de objeto. A cada nuevo objeto declarado se le reserva un espacio de memoria y se almacena su dirección. En el caso de las referencias, se omite ese paso, y se asigna la dirección de otro objeto que ya existía previamente. De ese modo, podemos tener varios identificadores que hacen referencia al mismo objeto, pero sin usar punteros.

El operador de dirección (&) devuelve la dirección de memoria de cualquier objeto

Los punteros se declaran igual que el resto de los objetos, pero precediendo el identificador con un asterisco (*)

 
int *pEntero;
int x = 10;
int y;

pEntero = &y; //pEntero apunta a la variable entera y
*pEntero = x; // y = 10

Más información sobre punteros: https://es.stackoverflow.com/questions/46909/cual-es-la-diferencia-entre-int-e-int

Si queremos que los cambios realizados en los parámetros dentro de la función se conserven al retornar de la llamada, deberemos pasarlos por referencia. Esto se hace declarando los parámetros de la función como referencias a objetos. Por ejemplo:

 
int funcion(int &n, int &m) {
  n = n + 2;
  m = m - 5;
  return n+m;
}

int a = 10;
int b = 20;

Serial.println(funcion(a,b));
Serial.println("a = " + String(a) + " b = " + String(b));
Serial.println(funcion(10,20)); //es ilegal pasar constantes como parámetros cuando estos son referencias

En este caso, los objetos “a” y “b” tendrán valores distintos después de llamar a la función. Cualquier cambio de valor que realicemos en los parámetros dentro de la función, se hará también en los objetos referenciadas. Esto quiere decir que no podremos llamar a la función con parámetros constantes, ya que aunque es posible definir referencias a constantes, en este ejemplo, la función tiene como parámetros referencias a objetos variables. Y si bien es posible hacer un casting implícito de un objeto variable a uno constante, no es posible hacerlo en el sentido inverso. Un objeto constante no puede tratarse como objeto variable.

Una const reference es una referencia a que no permite cambiar la variable a través de esa referencia. Por ejemplo const int& r = a; en r tengo el valor de a pero no puedo cambiar el valor de a usando r.

No confundir este concepto con el modificador de variable static, que es utilizado para crear variables que solo son visibles dentro de una función, sin embargo, al contrario que las variables locales que se crean y destruyen cada vez que se llama a la función, las variables estáticas mantienen sus valores entre las llamadas a las funciones.

Más información:

Sobrecarga de Funciones

Hay operadores que tienen varios usos, como por ejemplo *, &, << o >>. Esto es lo que se conoce en C++ como sobrecarga de operadores. Con las funciones existe un mecanismo análogo, de hecho, en C++, los operadores no son sino un tipo especial de funciones, aunque eso sí, algo peculiares.

En C++ podemos definir varias funciones con el mismo nombre, con la única condición de que el número y/o el tipo de los argumentos sean distintos. El compilador decide cuál de las versiones de la función usará después de analizar el número y el tipo de los parámetros. Si ninguna de las funciones se adapta a los parámetros indicados, se aplicarán las reglas implícitas de conversión de tipos.

Las ventajas son más evidentes cuando debemos hacer las mismas operaciones con objetos de diferentes tipos o con distinto número de objetos. También pueden usarse macros para esto, pero no siempre es posible usarlas, y además las macros tienen la desventaja de que se expanden siempre, y son difíciles de diseñar para funciones complejas. Sin embargo las funciones serán ejecutadas mediante llamadas, y por lo tanto sólo habrá una copia de cada una.

Ejemplo:

 
int mayor(int a, int b);
char mayor(char a, char b);
float mayor(float a, float b);
int mayor(int a, int b, int c, int d);

int mayor(int a, int b) {
  if(a > b) return a; else return b;
}

char mayor(char a, char b) {
  if(a > b) return a; else return b;
}

float mayor(float a, float b) {
  if(a > b) return a; else return b;
}

int mayor(int a, int b, int c, int d) {
  return mayor(mayor(a, b), mayor(c, d));
}

Las llamadas a funciones sobrecargadas se resuelven en la fase de compilación. Es el compilador el que decide qué versión de la función debe ser invocada, después de analizar, y en ciertos casos, tratar los argumentos pasados en la llamadas. A este proceso se le llama resolución de sobrecarga.

Tener en cuenta que el tipo de retorno de la función no se considera en la sobrecarga de funciones. Consideremos el caso en el que desea escribir una función que devuelve un número aleatorio, pero se necesita una versión que devolverá un entero, y otra versión que devolverá un doble.

int getRandomValue();
double getRandomValue();

Pero el compilador toma esto como un error. Estas dos funciones tienen los mismos parámetros (ninguno) y en consecuencia, la segunda getRandomValue () serán tratada como una redeclaración errónea de la primera. En consecuencia, tendrán que ser dado diferentes nombres a estas funciones.

Más información:

Sobrecarga de operadores:

Ámbito de las variables

Una variable puede ser declarada al inicio del programa antes de la parte de configuración setup(), a nivel local dentro de las funciones, y, a veces, dentro de un bloque, como para los bucles del tipo if.. for.., etc. En función del lugar de declaración de la variable así se determinará el ámbito de aplicación, o la capacidad de ciertas partes de un programa para hacer uso de ella.

Una variable global es aquella que puede ser vista y utilizada por cualquier función y estamento de un programa. Esta variable se declara al comienzo del programa, antes de setup().

Recordad que al declarar una variable global, está un espacio en memoria permanente en la zona de static data y el abuso de variables globales supone un uso ineficiente de la memoria.

Una variable local es aquella que se define dentro de una función o como parte de un bucle. Sólo es visible y sólo puede utilizarse dentro de la función en la que se declaró. Por lo tanto, es posible tener dos o más variables del mismo nombre en diferentes partes del mismo programa que pueden contener valores diferentes, pero no es una práctica aconsejable porque complica la lectura de código.

En el reference de Arduino hay una muy buena explicación del ámbito de las variables:http://arduino.cc/en/Reference/Scope

La variables estáticas solo se crean e inicializan la primera vez que la función es llamada. Ver ejemplo en: http://arduino.cc/en/Reference/Static

Más información:

NOTA: Hay una práctica del ámbito de las variables en el capítulo del curso de programación: “Prácticas: Variables y Tipos de Datos en Arduino”, Ejercicio07-Ambito_Variables

Inline

Cuando usamos el nombre de una función, indicando valores para sus argumentos, dentro de un programa, decimos que llamamos o invocamos a esa función. Esto quiere decir que el procesador guarda la dirección actual, “salta” a la dirección donde comienza el código de la función, la ejecuta, recupera la dirección guardada previamente, y retorna al punto desde el que fue llamada.

Esto es cierto para las funciones que hemos usado hasta ahora, pero hay un tipo especial de funciones que trabajan de otro modo. En lugar de existir una única copia de la función dentro del código, si se declara una función como inline, lo que se hace es insertar el código de la función, en el lugar (y cada vez) que sea llamada. Esta indica al compilador que cada llamada a la función inline deberá ser reemplazado por el cuerpo de esta función. En la práctica la función inline es utilizado sólo cuando las funciones son pequeñas para evitar generar un ejecutable de tamaño considerable.

La palabra reservada inline tiene la ventaja de acelerar un programa si éste invoca regularmente a la función inline. Permite reducir considerablemente el código, en particular para los accesadores de una clase. Un accesador de clase es típicamente una función de una línea. 

Ejemplo:

 
inline int mayor(int a, int b) {
  if(a > b) return a;
  return b;
}

Más información de inline:

Prototipos de Funciones

Primero recordar que en el lenguaje de Arduino al contrario que en estandar C, no es necesario declarar los prototipos de las funciones, puesto que de eso se encarga el de incluirlo el arduino builder, al igual que de añadir la función Main.

En C++ es obligatorio usar prototipos. Un prototipo es una declaración de una función. Consiste en una presentación de la función, exactamente con la misma estructura que la definición, pero sin cuerpo y terminada con un “;”. 

En general, el prototipo de una función se compone de las siguientes secciones:

  • Opcionalmente, una palabra que especifique el tipo de almacenamiento, puede ser extern o static. Si no se especifica ninguna, por defecto será extern.
  • El tipo del valor de retorno, que puede ser void, si no necesitamos valor de retorno.
  • Modificadores opcionales. 
  • El identificador de la función. Es costumbre, muy útil y muy recomendable, poner nombres que indiquen, lo más claramente posible, qué es lo que hace la función, y que permitan interpretar qué hace el programa con sólo leerlos.
  • Una lista de declaraciones de parámetros entre paréntesis. Los parámetros de una función son los valores de entrada (y en ocasiones también de salida). 

Un prototipo sirve para indicar al compilador los tipos de retorno y los de los parámetros de una función, de modo que compruebe si son del tipo correcto cada vez que se use esta función dentro del programa, o para hacer las conversiones de tipo cuando sea necesario.

Normalmente, los prototipos de las funciones se declaran dentro del fichero del programa, o bien se incluyen desde un fichero externo, llamado fichero de cabecera, (para esto se usa la directiva #include).

Ya lo hemos dicho más arriba, pero las funciones son extern por defecto. Esto quiere decir que son accesibles desde cualquier punto del programa, aunque se encuentren en otros ficheros fuente del mismo programa. En contraposición las funciones declaradas static sólo son accesibles dentro del fichero fuente donde se definen.

Si programamos en Arduino clases o librerías, es posible que debamos utilizar los prototipos de funciones.

Más información: 

Bibliotecas/Librerías en C++

Junto con los compiladores de C y C++, se incluyen ciertos archivos llamados bibliotecas más comúnmente librerías. Las bibliotecas contienen el código objeto de muchos programas que permiten hacer cosas comunes, como leer el teclado, escribir en la pantalla, manejar números, realizar funciones matemáticas, etc.

Las bibliotecas están clasificadas por el tipo de trabajos que hacen, hay bibliotecas de entrada y salida, matemáticas, de manejo de memoria, de manejo de textos y como imaginarás existen muchísimas librerías disponibles y todas con una función específica.

La declaración de librerías, tanto en C como en C++, se debe hacer al principio de todo nuestro código, antes de la declaración de cualquier función o línea de código, debemos indicarle al compilador que librerías usar, para el saber qué términos están correctos en la escritura de nuestro código y cuáles no. La sintaxis es la siguiente: #include <nombre de la librería> o alternativamente #include “nombre de la librería”. En tu código puedes declarar todas las librerías que quieras aunque en realidad no tienen sentido declarar una librería que no vas a usar en tu programa, sin embargo no existe límite para esto.

La directiva de preprocesador #include se usa en los lenguajes C y C++ para “incluir” las declaraciones de otro fichero en la compilación. Esta directiva no tiene más misterio para proyectos pequeños. En cambio, puede ayudar aprovechar bien esta directiva en proyectos con un gran número de subdirectorios.

Ejemplo:

 
#include "iostream"
#include "string"
#include <math.h>
using namespace std;

Lo único adicional, es la línea que dice using namespace std; esta línea nos ayuda a declarar un espacio de nombre que evita tener que usarlo cada que accedemos a alguna función específica de una librería. Teniendo este namespace declarado podemos llamar por ejemplo el comando cout >>, que pertenece a la librería iostream, sin embargo sin este namespace sería std::cout >>, imagina tener que hacer esto cada vez que uses algún comando o función de las librerías, sería bastante tedioso.

Algunas de las librerías de uso más común de C++ y que forman parte de las librerías estándar de este lenguaje.

  • fstream: Flujos hacia/desde ficheros. Permite la manipulación de archivos desde el programar, tanto leer como escribir en ellos.
  • iosfwd: Contiene declaraciones adelantadas de todas las plantillas de flujos y sus typedefs estándar. Por ejemplo ostream.
  • iostream: Parte del a STL que contiene los algoritmos estándar, es quizá la más usada e importante (aunque no indispensable).
  • math: Contiene los prototipos de las funciones y otras definiciones para el uso y manipulación de funciones matemáticas.
  • memory: Utilidades relativas a la gestión de memoria, incluyendo asignadores y punteros inteligentes (auto_ptr). “auto_ptr” es una clase que conforma la librería memory y permite un fácil manejo de punteros y su destrucción automáticamente.
  • ostream: Algoritmos estándar para los flujos de salida.
  • Librería stdio: Contiene los prototipos de las funciones, macros, y tipos para manipular datos de entrada y salida.
  • Librería stdlib: Contiene los prototipos de las funciones, macros, y tipos para utilidades de uso general.
  • string: Parte de la STL relativa a contenedores tipo string; una generalización de las cadenas alfanuméricas para albergar cadenas de objetos.
  • vector: Parte de la STL relativa a los contenedores tipo vector; una generalización de las matrices unidimensionales C/C++
  • list: Permite implementar listas doblemente enlazadas (listas enlazadas dobles) fácilmente.
  • iterator: Proporciona un conjunto de clases para iterar elementos.
  • regex: Proporciona fácil acceso al uso de expresiones regulares para la comparación de patrones.
  • thread: Útil para trabajar programación multihilos y crear múltiples hilos en nuestra aplicación.

Arduino ya incluye diversas librerías por defecto sin llamarlas explícitamente, p.e. math.h

Más información:

Software para visualizar dependencias de ficheros:

Funciones Anónimas y Lambda

En la programación, una función anónima (función literal, abstracción lambda o expresión lambda) es una definición de función que no está vinculada a un identificador. Las funciones anónimas son a menudo argumentos que se pasan a funciones de orden superior, o que se utilizan para construir el resultado de una función de orden superior que necesita devolver una función. Si la función sólo se utiliza una vez, o un número limitado de veces, una función anónima puede ser sintácticamente más ligera que la que se utiliza con una función nombrada. Las funciones anónimas se utilizan en casi todos los lenguajes de programación.

En algunos lenguajes de programación, las funciones anónimas se implementan comúnmente para propósitos muy específicos, como la vinculación de eventos funciones de callback, o la instanciación de la función para valores particulares, que pueden ser más eficientes, más legibles y menos propensos a errores que la llamada a una función con nombre más genérico.

C++ soporta funciones anónimas, llamadas expresiones lambda, que tienen la forma::

[capture](parameters) -> return_type { function_body }

Un ejemplo de función lambda se define de la siguiente manera:

 
[ ](int x, int y) -> int { return x + y; }

C++11 también soporta cierres. Los cierres (closures) se definen entre corchetes ([,]) en la declaración de expresión lambda. El mecanismo permite capturar estas variables por valor o por referencia. La siguiente tabla lo demuestra:

  • [ ]        //no variables defined. Attempting to use any external variables in the lambda is an error.
  • [ x, &y ]   //x is captured by value, y is captured by reference
  • [ & ]       //any external variable is implicitly captured by reference if used
  • [ = ]       //any external variable is implicitly captured by value if used
  • [ &, x ]    //x is explicitly captured by value. Other variables will be captured by reference
  • [ =, &z ]   //z is explicitly captured by reference. Other variables will be captured by value

Más información:

Librerías vs Funciones en Arduino

Si en nuestro código tenemos múltiples funciones, podemos incluirlas en un fichero de C++ por ejemplo funciones.h, e incluyéndose en el principal con la instrucción #include “funciones.h”. En C++ el código se organiza en diferentes ficheros con extensiones .h y .cpp a los que se van llamando con #include para añadirlos al fichero que lo llama para poder usar su contenido.

Ejemplo: https://github.com/jecrespo/aprendiendoarduino-Curso_Arduino_2017/tree/master/Ejercicio45-Librerias

Como se ha visto anteriormente, las librerías son trozos de código hechas por terceros que usamos en nuestro sketch. Esto nos facilita mucho la programación y hace que nuestro programa sea más sencillo de hacer y luego de entender. Más adelante veremos cómo hacer una librería.

Las librerías en Arduino incluyen los siguientes archivos comprimidos en un archivo ZIP o dentro de un directorio. Estas siempre contienen:

  • Un archivo .cpp (código de C++)
  • Un archivo .h o encabezado de C, que contiene las propiedades y métodos o funciones de la librería.
  • Un archivo Keywords.txt, que contiene las palabras clave que se resaltan en el IDE (opcional).
  • Muy posiblemente la librería incluye un archivo readme con información adicional de lo que hace y con instrucciones de como usarla.
  • Directorio denominado examples con varios sketchs de ejemplo que nos ayudará a entender cómo usar la librería (opcional).

Más información: https://aprendiendoarduino.wordpress.com/2017/06/20/librerias-arduino-3/ 

Una librería a diferencia de las funciones debe estar al menos en un fichero diferente con extensión .h y opcionalmente en otro .cpp y además debe ser llamada con #include desde el sketch de arduino y estar en una ruta accesible desde el IDE de Arduino, ya sea el mismo directorio del sketch o en algunas de las rutas configuradas para librerías. 

La ventaja de usar librerías frente a las funciones es que no es necesario incluir el código cada vez que se va a reutilizar sino que con tener la librería instalada en el IDE y llamarla mediante #include ya la puedo usar en mi código.

Al llamar a una librería desde un sketch, la librería completa es cargada a la placa de Arduino incrementando el tamaño del espacio usado en el microcontrolador, tanto en la memoria flash como en la RAM.

Las librerías que usamos para los sketches tienen una versión, que se suelen actualizar con frecuencia. También tenemos un control de versiones en el nuevo IDE a partir de 1.6.4 que nos facilita la gestión de la versión de las librerías usadas. Este aspecto es importante porque un sketch que funciona con una versión de una librería es posible que al compilarlo con otra versión en otro IDE no funcione. Por ello es importante documentar con que versión de librería está hecho o distribuir el sketch con la librería con la que se ha creado. Generalmente las librerías tienen compatibilidad hacia atrás, pero puede que no ocurra o que el comportamiento de la librería sea diferente.

Al cambiar el IDE también nos podemos encontrar que nuestro sketch no es compatible con la versión de la librería que estemos usando, que es diferente con la que se diseñó originalmente el sketch.

Listado de librerías Arduino:

Funciones Definidas por Usuario

En programación, una función es un grupo de instrucciones con un objetivo particular y que se ejecuta al ser llamada desde otra función o procedimiento. Una función puede llamarse múltiples veces e incluso llamarse a sí misma (función recurrente).

Las funciones pueden recibir datos desde afuera al ser llamadas a través de los parámetros y puede entregar un resultado.

Una función tiene un nombre y un conjunto de instrucciones que son ejecutadas cuando se llama a la función. Son funciones setup() y loop() de las que ya se ha hablado anteriormente.

Las funciones de usuario pueden ser escritas para realizar tareas repetitivas y para reducir el tamaño de un programa. Segmentar el código en funciones permite crear piezas de código que hacen una determinada tarea y volver al área del código desde la que han sido llamadas.

Las funciones se declaran asociadas a un tipo de valor. Este valor será el que devolverá la función, por ejemplo ‘int’ se utilizará cuando la función devuelva un dato numérico de tipo entero. Si la función no devuelve ningún valor entonces se colocará delante la palabra “void”, que significa “función vacía”

Sintaxis:

 
tipo nombreFunción (parámetros) {
   instrucciones;
}

Anatomía de una función en C:

Para llamar a una función, simplemente:

 
nombreFunción(parámetros);

Una función que devuelve un valor siempre debe tener la instrucción Return, esta termina una función y devuelve un valor a quien ha llamado a la función: http://arduino.cc/en/Reference/Return

Si se define una función y no ponemos return el valor devuelto es cero. No da error de compilación.

Ventajas del uso de funciones:

  • Ayuda a tener organizado el código.
  • Una función codifica una tarea en un lugar de nuestro sketch, así que la función solo debe ser pensada una sola vez.
  • Reduce la probabilidad de errores al modificar el código.
  • Hacen que el tamaño del sketch sea menor porque el código de la función es reutilizado.
  • Facilita la lectura del código.
  • Hace más sencillo reutilizar código en otros sketches.

Más información: http://arduino.cc/en/Reference/FunctionDeclaration

Funciones Arduino en playground: http://playground.arduino.cc/Code/Function

En Visualino podemos hacer uso de las funciones en el apartado de “Functions”

En Visualino para multiplicar la lecturas de las entradas analógicas A0 y A1 usando una función multiplicación se puede hacer así:

Solución: https://github.com/jecrespo/aprendiendoarduino-Curso_Arduino_2017/tree/master/Ejercicio42-Visualino_Funciones

Nombres de funciones

Generalmente los nombres de las funciones deben ser en minúscula, con las palabras separadas por un guión bajo, aplicándose éstos tanto como sea necesario para mejorar la legibilidad.

“mixedCase” (primera palabra en minúscula) es aceptado únicamente en contextos en donde éste es el estilo predominante con el objetivo de mantener la compatibilidad con versiones anteriores.

En el caso de las clases, los nombres deben utilizar la convención “CapWords” (palabras que comienzan con mayúsculas).

Las funciones en Arduino pueden estar dentro del mismo fichero .ino o en otro fichero con extensión .ino dentro del directorio del sketch principal.

Funciones vs Librerías

Ejemplo de blink usando funciones:

 
void setup() {
  Serial.begin(9600);
  pinMode(13, OUTPUT);
}

void loop() {
  enciendo();
  delay(1000);  
  apago();
  delay(1000);  
}

void enciendo() {
  Serial.println("Enciendo...");
  digitalWrite(13, HIGH);
}

void apago(){
  Serial.println("Apago...");
  digitalWrite(13, LOW);  
}

Código: https://github.com/jecrespo/aprendiendoarduino-Curso_Arduino_2017/tree/master/Ejercicio43-Blink_Funcion

En Visualino se podría hacer de esta forma:

Solución: https://github.com/jecrespo/aprendiendoarduino-Curso_Arduino_2017/tree/master/Ejercicio43-Visualino_Blink_Funcion

Este ejercicio también se podría hacer dividiendo el código en dos ficheros uno principal que tiene las funciones setup() y loop() y otro con las funciones enciende() y apaga () en el fichero funciones.ino. Los ficheros están en la misma carpeta y al abrirlos en el IDE de Arduino los vemos en pestañas diferentes.

Por lo tanto podemos organizar nuestro código en varios ficheros .ino en la misma carpeta. Todo ellos los veremos en pestañas en el IDE de Arduino.

Código en: https://github.com/jecrespo/aprendiendoarduino-Curso_Arduino_2017/tree/master/Ejercicio44-Funciones

Esto también podría hacerse usando “librerías”  o fichero de C++ con un fichero funciones.h e incluyéndolo en el principal con la instrucción #include “funciones.h”.

En C++ el código se organiza en diferentes ficheros con extensiones .h y .cpp a los que se van llamando con #include para añadirlos al fichero que lo llama para poder usar su contenido.

Código en: https://github.com/jecrespo/aprendiendoarduino-Curso_Arduino_2017/tree/master/Ejercicio45-Librerias

Práctica Final de Funciones

Con todo lo visto de Strings, operadores, estructuras de control y funciones, hacer un ejemplo de un menú interactivo donde se dan varias opciones y pulsando cada una de ellas se ejecuta una acción concreta. Si el valor pulsado no es ninguna de las opciones avisar y volver a mostrar el menú hasta que se pulse una opción correcta.

Opciones:

  • 1 – Encender Led pin 13
  • 2 – Apagar Ler pin 13
  • 3 – Contar segundos hasta pulsar tecla y mostrar por pantalla
  • 4 – Fin de programa

Solución: https://github.com/jecrespo/aprendiendoarduino-Curso_Arduino_2017/tree/master/Ejercicio46-Estructuras_de_Control