Archivo de la etiqueta: IDE

Instalación Software Arduino

Antes de empezar a usar el hardware de Arduino, vamos a conocer el software de Arduino, dejarlo instalado y configurado para poder empezar a trabajar.

Desinstalación del Software Arduino y Configuraciones

NOTA: Esto es para el buen desarrollo del curso Arduino, si haces esto en tu ordenador de casa perderás los sketches que tengas en el espacio de trabajo de Arduino, las librerías instaladas y las configuraciones personalizadas del IDE. NO LO HAGAS ESTAS OPERACIONES DE DESINSTALACIÓN SI NO ESTAS SEGURO y sigue con la instalación del software de Arduino en el siguiente párrafo.

Para tener una instalación limpia y que no haya problemas en la realización de las prácticas del curso de Arduino hacer los siguientes pasos:

  • Ver los directorios de configuración del software de Arduino, para ello entrar en el menú Archivo → preferencias

  • Desinstala (si está instalado) el software de Arduino desde el Panel de Control de Windows. Asegurate que dentro del directorio “C:\Program Files (x86)\Arduino\” no queda nada dentro o sino borralo.
  • Borra (si existe) la carpeta y todo su contenido de Localización de Proyecto que estaba en propiedades. Generalmente será: “C:\Users\ThinkTIC\Documents\Arduino”. Esto borra los sketches guardados y las librerías instaladas.
  • Borra (si existe) la carpeta y su contenido de preferencias que estaba en propiedades. Generalmente será: “C:\Users\ThinkTIC\AppData\Local\Arduino15”. Esto borra las preferencias del software de Arduino y el soporte a placas instalado.

Ahora ya tenemos limpio de datos de la anterior instalación del software de Arduino y podemos empezar con una instalación limpia desde cero.

Instalación del Software Arduino

Vamos a instalar la última versión del IDE de Arduino, conocer el entorno de programación y hacer las principales configuraciones en el entorno para poder trabajar de forma más eficiente.

Descargar la última versión del IDE de Arduino desde: http://arduino.cc/en/Main/Software.

El IDE de Arduino también está disponible en la web de http://www.arduino.org/downloads y es el mismo IDE que podemos encontrar en https://www.arduino.cc/en/Main/Software pero es recomendable hacerlo desde la página principal www.arduino.cc  

Arduino.org es la web de la división de Arduino encargada de fabricar las placas, en su momento hubo una ruptura de relación en dos Arduinos, pero que actualmente son entidades diferentes trabajando de forma conjunta desde el 1 de octubre de 2016. Más información: https://blog.arduino.cc/2016/10/01/two-arduinos-become-one-2/

Nota: Si quieres saber más de la historio de esta división, puedes leer https://aprendiendoarduino.wordpress.com/2016/03/19/arduino-cc-y-arduino-org-los-dos-arduinos/.

Elegir la opción de Windows Installer, aunque también es posible descargar la versión comprimida en zip, que es una versión portable o para aquellos que no tengan privilegios suficientes para instalar aplicaciones o simplemente quien quiera hacer una instalación manual. En caso de descargar la versión comprimida en zip, simplemente descomprimirlo en la carpeta deseada y ya podemos usarlo.

Una vez descargado, ejecutar el instalador. Si existe una versión anterior el instalador nos avisa y nos desinstala la versión actual. En el caso que hayamos hecho modificaciones en el directorio de instalación las perderemos.

Ya en la instalación aceptamos el acuerdo de licencia.

Marcar todas las opciones y elegir directorio de instalación, generalmente C:\Program Files (x86)\Arduino\:

Permitir instalar los drivers si lo solicita:

Y ya está instalado:

En este momento ya tenemos instalado el IDE en nuestro ordenador.

Ejecutar la aplicación:

Y este es el aspecto del IDE:

Las novedades de la nueva versión del IDE:

  • Soporte multiplataforma de arduino
  • Detección automática de la placa conectada
  • Muestra memoria Flash y SRAM ocupada por un sketch o proyecto
  • Autoguardado al compilar y cargar sketch
  • Carga de sketch vía red (wifi o ethernet) para Arduino Yun.

El IDE de Arduino es multiplataforma y en caso de instalar el IDE Arduino en otros sistemas operativos estas son las instrucciones:

Recientemente se ha liberado una versión del IDE para dispositivos Linux con HW basados en ARM como Raspberry Pi: http://hackaday.com/2016/04/12/arduino-comes-to-the-raspberry-pi-linux-arm-devices/ y otra versión como app de windows: https://www.microsoft.com/es-es/store/p/arduino-ide/9nblggh4rsd8

NOTA: para usuarios de linux/debian, el IDE Arduino está en los repositorios oficiales, pero instalará una versión antigua del IDE. Por lo tanto aunque funcione “apt-get install arduino “, es recomendable hacer la instalación según https://www.arduino.cc/en/Guide/Linux. Para ver qué versión se instalará desde el repositorio oficial usar el comando “apt-cache showpkg arduino”

Actualizar el IDE de Arduino

Para actualizar una versión anterior del IDE de Arduino, el procedimiento es el mismo que el de una instalación inicial, puesto que el instalador detecta una versión anterior y la desinstala manteniendo todas nuestras configuraciones, librerías y sketches anteriores.

En caso que queramos mantener varias versiones del IDE en el mismo ordenador, simplemente hacemos la instalación manual en directorios diferentes y las configuraciones, librerías y sketches son compartidas por las diferentes versiones del IDE instaladas.

A la hora de actualizar, el instalador de Arduino lo que hace es borrar toda la ruta completa donde hemos instalado Arduino e instala la nueva versión. Por lo tanto cualquier modificación o librería instalada en el directorio de instalación se perderá en la actualización.

Es importante que cualquier sketch que hagamos y cualquier librería que instalemos se haga en la ruta indicada en las propiedades, de esta forma mantendremos nuestra configuración al actualizar el IDE.

Anuncios

Arduino Intel Edison + Intel IoT Analytics

Este artículo está motivado por mi asistencia al hackathon celebrado entre el 25 y 27 de marzo de 2017 en el World Hosting Days en Europa Park, Rust, Alemania. Más información: http://worldhostingdays.com/global/

Datos del hackathon: http://worldhostingdays.com/global/side-event/cloud-community-hackathon

En mi caso fui a participar en el proyecto conjunto de 1and1 e Intel donde el objetivo era comprobar las características del microprocesador Intel Edison manejando sensores y actuadores en combinación con el motor de analíticas de Intel para IoT hospedado en el cloud de 1and1. Los detalles del proyecto pueden verse en: http://worldhostingdays.com/global/project/1and1

El kit de herramientas que dispusimos fue:

  • Cloud infrastructure
    • Open IoT Connector hosted by 1&1 which connects devices to the cloud. http://streammyiot.com/
    • 1&1 Analytic Cloud Environment with MQTT broker and Node.js.

También dispusimos de la API para interactuar con el cloud de 1&1:

Arduino Edison

Intel Edison es un módulo de computación de Intel que es posible usarlo con el formato de Arduino. Está centrado en el IoT y wearables. Tiene un sistema linux yocto embebido pero es capaz de ejecutar los Sketch de Arduino que al ser compilados se guardan en un directorio del sistema de ficheros y es ejecutado. También dispone de conectividad Wi-Fi y Bluetooth.

El Intel Edison es un pequeño módulo desarrollado por Intel y orientado a la electrónica embebida incluso en proyectos comerciales. Es una pequeña placa llena de posibilidades y no es para menos ya que en su diminuto tamaño encontramos un Intel® Atom™ SoC dual-core con WiFi, Bluetooth LE integrado. Una funcionalidad importante es que dispone de un conector genérico de 70 pines para poder conectar todo tipo de periféricos y placas desarrolladas para esta plataforma.

Está pensado para aplicaciones de bajo consumo pero gracias al amplio soporte de software proporcionado por Intel, puede ser utilizado en poco minutos incluso por principiantes en electrónica.

Web Intel Edison:

Wikipedia: https://en.wikipedia.org/wiki/Intel_Edison

El kit de Arduino Edison incluye los pines hembra de Arduino, que permite conectar la mayoría de placas shields de Arduino al módulo de forma nativa. Todos los pines del 0 al 13 (junto con AREF y GND), pines analógicos 0 a 5, alimentación, ICSP y el UART están en el mismo sitio que el Arduino UNO R3 para guardar la máxima compatibilidad.  Además la placa del Intel Edison incluye un zócalo para tarjetas de memoria Micro SD, un conector Micro USB conectado al UART2 y un conector estándar USB 2.0. En la documentación se dispone de librerías para gestionar los pines de Arduino disponibles.

Arduino Edison HW guide: http://www.intel.com/content/dam/support/us/en/documents/edison/sb/edison-arduino-hardware-guide.pdf

Arquitectura Intel Edison (microprocesador):

  • Dual-core Intel® Atom™ processor at 500 MHz
  • 1 GB DDR3 RAM, 4 GB eMMC flash
  • 40 multiplexed GPIO interfaces
  • Bluetooth* 4.0, Wi-Fi*
  • Yocto Project*, Brillo*
  • Arduino* compatible
  • Open-source software development environment
  • C/C++, Python*, Node.js*, HTML5, JavaScript*

Características: http://download.intel.com/support/edison/sb/edison_pb_331179002.pdf

Arduino Edison: https://www.arduino.cc/en/ArduinoCertified/IntelEdison

Características de la placa:

  • 20 digital input/output pins, including 6 pins as PWM outputs.
  • 6 analog inputs.
  • 1 UART (Rx/Tx).
  • 1 I2C.
  • 1 ICSP (In-system programming ) 6-pin header (SPI).
  • Micro USB device connector OR (via mechanical switch) dedicated standard size USB host Type-A connector.
  • Micro USB device (connected to UART).
  • SD card connector.
  • DC power jack (7 to 15VDC input).

Documentación: https://software.intel.com/es-es/iot/hardware/edison/documentation

Intel ha desarrollado sus propias herramientas para programar el microprocesador Intel Edison, que ofrece más potencia a la hora de programarlo que con el lenguaje de Arduino y su IDE, pero tiene la desventaja de tener que aprender su SDK. El SDK puede encontrarse en descargas: https://software.intel.com/es-es/iot/hardware/edison/downloads

Al igual que el Arduino UNO el kit de Intel® Edison para Arduino hace posible tener 20 pines digitales de entrada/salida, 6 de los cuales pueden usarse como entradas analógicas. El Intel® Edison tiene 4 salidas PWM que pueden configurarse mediante jumpers para usarse en cualquiera de los 6 pines que soportan PWM en el Arduino UNO (pins 3, 5, 6, 9, 10, or 11).

Los pines de entrada/salida (I/O) y los analógicos pueden ser configurados para funcionar a 5V o 3.3V. Los pines en modo salida soportan hasta 24mA a 3.3V y 32mA a 5V

Arquitectura:

Para usar el microprocesador Intel Edison, hay también disponible una breakout board:

Breakout board: http://download.intel.com/support/edison/sb/edisonbreakout_hg_331190006.pdf

Esta breakout board ha sido diseñada para exponer los pines nativos a 1.8V del Intel® Edison y poder trabajar con ella. La placa se compone de una fuente de alimentación, una cargador de batería, USB OTG power switch, UART to USB bridge, USB OTG port y I/O header.

Pinout: http://www.intel.com/content/www/us/en/support/boards-and-kits/000006090.html

Hardware Guide: http://download.intel.com/support/edison/sb/edisonmodule_hg_331189004.pdf

Compra:

Comparativa de Intel Edison:

Edison no es una raspberry Pi, principalmente porque no hay una salida de video en Edison. Aquí hay una buena comparativa: https://www.sparkfun.com/news/1603

Más información de Intel Edison en: https://www.arduino.cc/en/ArduinoCertified/IntelEdison

Arduino Edison tiene una distribución de Yocto Linux corriendo en su interior. Más información sobre el proyecto Yocto en: https://en.wikipedia.org/wiki/Yocto_Project

Programación Arduino Edison

Arduino Edison es posible programarlo con el IDE de Arduino y es posible desde el sketch de Arduino hacer peticiones al kernel de Linux con llamadas al sistema.

Enlaces imprescindibles para empezar con Arduino Edison:

Para poder usar Arduino Intel Edison con el IDE de Arduino, es necesario instalar el paquete para las Intel i686 Boards.

Los entornos de desarrollo para Intel Edison son:

IDEs para hardware Intel: https://software.intel.com/es-es/iot/tools-ide/ide

Development environment:

Supported sensors:

Sensor kits:

Intel XDK IoT Edition (programar con node.js):

Procedure to Autostart the Arduino Sketch on Intel® Edison: https://software.intel.com/en-us/blogs/2015/08/01/procedure-to-autostart-the-arduino-sketch-on-edison

Modo AP en Intel Edison: https://software.intel.com/en-us/getting-started-with-ap-mode-for-intel-edison-board

Ejemplos de uso de Arduino Edison:

Arduino Galileo

Existen otros Arduinos con microprocesadores Intel, uno de ellos es el más reciente Arduino 101 que es el mismo concepto que Arduino UNO, pero con concepto de SoC del Arduino Edison también existe el Arduino Galileo. Este es un Arduino anterior y con menos capacidades que el Edison.

Para usar el Arduino Galileo con el IDE de Arduino es necesario instalarse el el paquete para las Intel i586 Boards.

Arduino Galileo (retirado): https://www.arduino.cc/en/ArduinoCertified/IntelGalileo

Arduino Galileo Gen2: https://www.arduino.cc/en/ArduinoCertified/IntelGalileoGen2

Web Intel: https://software.intel.com/es-es/iot/hardware/galileo

Wikipedia: https://en.wikipedia.org/wiki/Intel_Galileo

Arduino Galileo también usa Yocto Linux.

Edison vs Galileo:

Plataforma Cloud IoT de Intel

Una vez aclarado qué es Arduino Edison y que ya sabemos que podemos programarlo como cualquier otro Arduino, veamos cómo combinar nuestra experiencia con Arduino con la plataforma cloud IoT de Intel para hacer proyectos de IoT.

Intel al igual que otras muchas empresa ha desarrollado sus recursos para IoT. La Web de recursos para IoT de Intel: https://software.intel.com/es-es/iot/home

Visión de Intel en el IoT: http://www.intel.la/content/www/xl/es/internet-of-things/overview.html

La plataforma cloud IoT de Intel está disponible en http://streammyiot.com/ y es posible registrarse y usarla de forma gratuita.

Intel® IoT Analytics Platform:

  • Provides seamless Device-to-Device and Device-to-Cloud communication.
  • Ability to run rules on your data stream that trigger alerts based on advanced analytics.
  • Foundational tools for collecting, storing, and processing data in the cloud.
  • Free for limited and noncommercial use.

Con los datos recogidos con esta plataforma luego es posible extraerlos, transformarnos, cargarlos y utilizarlos. Cuando son enormes cantidades es cuando se usa el big data: https://software.intel.com/en-us/bigdata

Esta plataforma IoT está alojado el los servidores cloud de 1&1: https://www.1and1.com/dynamic-cloud-server

Para empezar a usar esta plataforma tenemos toda la documentación en:

Tutorial excelente para uso de Arduino edison con Intel IoT Analytics: http://www.instructables.com/id/Intel-IoT-Analytics-Dashboard/

Otro tutorial: https://medium.com/@shonsh/visualizing-sensor-data-using-intel-iot-analytics-d2d1de9ae118#.5ktwz5lyl

Otras plataformas de cloud analytics con las que conectar el Arduino Edison: https://software.intel.com/en-us/iot/cloud-analytics:

Uso de la Plataforma Intel IoT Analytics

Una vez aprendidos los conceptos vamos a ponerlos en práctica conectando el Arduino Edison a la plataforma Intel IoT Analytics, para ellos comencemos a recoger datos.

La programación del HW IoT tiene dos partes: recoger datos de los sensores y la de enviar los datos. Para empezar primero debemos configurar una cuenta de IoT analytics y luego seguir con la conectividad.

Pasos a dar para poner a subir datos a la plataforma:

IMPORTANTE

Para entender la estructura en que los datos se guardan en la plataforma leer: https://github.com/enableiot/iotkit-api/wiki/Api-Home#data-structure

Una vez instalado todo vemos el dashboard:

Para mandar datos desde Arduino Edison a la plataform Intel IoT Analytics podemos hacerlo vía HTTP o MQTT. En este caso vamos a usar HTTP.

Disponemos de un repositorio en github con muchos ejemplo para el IoT Kit Intel: https://github.com/enableiot/iotkit-samples

Y un muy buen ejemplo de uso de la API client for python lo tenemos en: https://github.com/enableiot/iotkit-samples/blob/master/api/python/iotkit_client.py

Estas mismas llamadas para guardar datos en la plataforma usando la API se pueden aplicar a Arduino para que guarde los datos.

Para obtener el token de usuario: https://github.com/enableiot/iotkit-api/wiki/Authorization

POST /v1/api/auth/token HTTP/1.1
Host: 109.228.56.48
Content-Type: application/json

{
    "username": "aprendiendoarduino@gmail.com",
    "password": “password"
}

 

Dar de Alta un dispositivo: https://github.com/enableiot/iotkit-api/wiki/Device-Management

PUT /v1/api/accounts/4d6398a7-49aa-45f0-8b53-54896778a736/devices/90-A2-DA-10-B3-BD/activation HTTP/1.1
Host: 109.228.56.48
Authorization: Bearer APIKEY
Content-Type: application/json

{ 
     "activationCode": "activationcode"
}

Añadir un componente a un dispositivo: https://github.com/enableiot/iotkit-api/wiki/Device-Management#add-a-component-to-a-device

POST /v1/api/accounts/4d6398a7-49aa-45f0-8b53-54896778a736/devices/90-A2-DA-10-00-00/components HTTP/1.1
Host: 109.228.56.48
Authorization: Bearer APIKEY
Content-Type: application/json
Cache-Control: no-cache

{ 
	"cid": "436e7e74-6771-4898-9057-26932f5eb7e1",
	"name": "temperatura",
	"type": "temperature.v1.0"
}

Código Arduino para poner en un actuador y que reaccione: https://github.com/enableiot/iotkit-samples/blob/master/arduino/IoTkit/examples/IoTKitActuationExample/IotKitActuationExample.ino

Data API para envío y recepción de datos: https://github.com/enableiot/iotkit-api/wiki/Data-API

Rule Management: https://github.com/enableiot/iotkit-api/wiki/Rule-Management

Alert Management: https://github.com/enableiot/iotkit-api/wiki/Alert-Management

Error Handling: https://github.com/enableiot/iotkit-api/wiki/Error-Handling

Hackathon WHD

Ahora que ya sabemos como manejar la plataforma y como mandar los datos desde el Arduino Edison, en el Hackathon del WHD planteamos un proyecto de una planta solar inteligente que en función de la demanda energética, es capaz de activar o desactivar paneles monitorizados en tiempo real y detectar cualquier incidencia o avería, dentro del proyecto de Intel y 1&1: http://worldhostingdays.com/global/project/1and1

El material usado en el hackathon fue:

Repositorio con documentación y ejemplo para el hackathon del WHD: https://github.com/srware/WHD.global-2017

Repositorio de todo el trabajo hecho en el hackathon: https://github.com/jecrespo/aprendiendoarduino-iot/tree/master/04-Intel%20IoT%20Analytics

El grupo de Españoles trabajando con Arduino:

En el hackathon:

Para conectar a red Arduino Edison:

Cómo cargar un programa en el Edison: https://www.arduino.cc/en/Guide/IntelEdison

Comandos interesantes en yocto linux

  • configure_edison –help
  • iotkit-admin
  • systemctl stop iotkit-agent
  • systemctl start iotkit-agent
  • systemctl status iotkit-agent -l
  • iotkit-admin catalog
  • iotkit-admin register
  • iotkit-admin observation

Dentro del Arduino Edison debe estar instalada la versión de yocto con el iotkit, que es un agente al que puede llamar para hacer determinadas tareas en la plataforma IoT de Intel. Explicación: “The agent is a program that runs as a daemon on the device, listening for simple messages from other processes and handling the necessary message formatting and security to send observations to the cloud. The agent comes with another program, iotkit-admin, which provides many utility functions, such as testing the network, activating a device, registering time series, and sending test observations. The agent is controlled by systemctl, the systemd service manager.”

Cuando cargamos un sketch de Arduino en el Edison, este se pierde después de reiniciar la placa. Para que funcione en el reinicio poner este fichero en el systemctl: /etc/systemd/system/arduino-sketch.service

Contenido del fichero:

systemctl daemon-reload
systemctl status arduino-sketch.service
systemctl enable arduino-sketch.service

Para resolver los problemas con el timezone debo realizar estos pasos

  • timedatectl status
  • ls -l /etc/localtime
  • cd /usr/share/zoneinfo (ver dónde está configurado)
  • timedatectl set-timezone Europe/Paris (y pongo esta)

Para ver el catálogo: iotkit-admin catalog

Para registrar componentes:

  • iotkit-admin register panel_temperature temperature.v1.1
  • iotkit-admin register solar_radiation radiation.v1.0
  • iotkit-admin register onoffButton button.v1.1
  • iotkit-admin register alarm powerswitch.v1.0
  • iotkit-admin register status powerswitch.v1.0

Para cambiar protocolo:

  • iotkit-admin protocol ‘mqtt’
  • iotkit-admin protocol ‘rest+ws’

Con estos detalles que aprendimos de la gente de Intel que estuvo en el hackathon pudimos hacer nuestro proyecto de una planta solar conectada y el resultado se puede ver en https://github.com/jecrespo/aprendiendoarduino-iot/tree/master/04-Intel%20IoT%20Analytics

Vídeo del resultado:

Y nuestra presentación: https://www.slideshare.net/jecrespo/whd-global-2017-smart-power-plant

Nuestro proyecto: https://www.1and1.com/cloud-community/develop/hackathon-projects/11-and-intel/smart-solar-power-plant/

Y finalmente nuestro proyecto fue presentado en el WHD:

Más fotos y publicaciones de

Durante el hackathon se presentó la cloud community de 1&1: www.1and1.com/cloud-community

Qué es Arduino

Esta conferencia sobre IoT con Arduino fue expuesta el 1 de abril de 2017 con motivo del Arduino Day. Puedes ver el video de la conferencia completa en http://www.innovarioja.tv/index.php/video/ver/1661


Arduino es una plataforma de hardware libre, basada en una placa con un microcontrolador y un entorno de desarrollo, diseñada para facilitar el uso de la electrónica en proyectos multidisciplinares.

Hardware Libre: http://es.wikipedia.org/wiki/Hardware_libre

Definición de Arduino en la web oficial: https://www.arduino.cc/en/Guide/Introduction

Otras definiciones de Arduino:

Arduino es una plataforma abierta que facilita la programación de un microcontrolador. Los microcontroladores nos rodean en nuestra vida diaria, usan los sensores para escuchar el mundo físico y los actuadores para interactuar con el mundo físico. Los microcontroladores leen sobre los sensores y escriben sobre los actuadores.

En palabras de David Cuartielles: “Actualmente todo lo que nos rodea en la vida es digital (entendido como hacer operaciones matemáticas complejas y comunicar con otros dispositivos), cualquier cosa lleva un microchip, desde el microondas a un coche. Arduino lleva uno de esos microchips y te permite aprender a manejar como funciona el mundo en el que vivimos hoy en día y cómo interactúa el hombre con el mundo digital. Arduino es la puerta hacia tomar control de cómo funcionan las cosas actualmente y en el futuro. Así que encender el ordenador y empezar a programar.

El HW Arduino:

Por otro lado Arduino nos proporciona un  software consistente en un entorno de desarrollo (IDE) que implementa el lenguaje de programación de arduino y el bootloader ejecutado en la placa. La principal característica del software de programación y del lenguaje de programación es su sencillez y facilidad de uso.

El software hecho para Arduino es portable, es decir, el mismo firmware que hemos hecho para un Arduino/Microcontrolador, sirve para otras placas Arduino u otras placas compatibles Arduino como el ESP8266.

Hay otro factor importante en el éxito de Arduino, es la comunidad que apoya todo este desarrollo, comparte conocimiento, elabora librerías para facilitar el uso de Arduino y publica sus proyectos para que puedan ser replicados, mejorados o ser base para otro proyecto relacionado.

La expresión local de la comunidad Arduino son los makerspaces como el UR-maker de la Universidad de La Rioja: http://www.unirioja.es/urmaker/

Para recibir información de los eventos de la comunidad maker de Logroño inscribirse en la lista de correo noticias@aprendiendoarduino.com o mandar un correo a aprendiendoarduino@gmail.com para inscribirse.

En resumen:

Arduino = HW + SW + Comunidad

¿Para qué sirve Arduino? Arduino se puede utilizar para desarrollar elementos autónomos, conectándose a dispositivos e interactuar tanto con el hardware como con el software. Nos sirve tanto para controlar un elemento, pongamos por ejemplo un motor que nos suba o baje una persiana basada en la luz existente es una habitación, gracias a un sensor de luz conectado al Arduino, o bien para leer la información de una fuente, como puede ser un teclado, y convertir la información en una acción como puede ser encender una luz y pasar por un display lo tecleado.

Librerías Arduino

Las librerías son trozos de código hechos por terceros que usamos en nuestro sketch. Esto nos facilita mucho la programación y hace que nuestro programa sea más sencillo de hacer y de entender. En este curso no veremos como hacer o modificar una librería pero en este curso debemos ser capaces de buscar una librería, instalarla, aprender a usar cualquier librería y usarla en un sketch.

Las librerías son colecciones de código que facilitan la interconexión de sensores, pantallas, módulos electrónicos, etc. El entorno de arduino ya incluye algunas librerías de manera que facilita, por ejemplo, mostrar texto en pantallas LCD.

Existen infinidad de librerías desarrolladas por terceros en internet con sus correspondientes forks, que nos ayudarán a conectar prácticamente cualquier dispositivo a los Arduinos de forma muy sencilla.

En este momento hay 883 librerías oficiales de Arduino, listado: http://www.arduinolibraries.info/ y cada semana aumenta.

Programación Arduino

El lenguaje de programación de Arduino es C++. No es un C++ puro sino que es una adaptación que proveniente de avr-libc que provee de una librería de C de alta calidad para usar con GCC (compilador de C y C++) en los microcontroladores AVR de Atmel y muchas utilidades específicas para las MCU AVR de Atmel como avrdude: https://learn.sparkfun.com/tutorials/pocket-avr-programmer-hookup-guide/using-avrdude

Aunque se hable de que hay un lenguaje propio de programación de Arduino, no es cierto, la programación se hace en C++ pero Arduino ofrece unas librerías o core que facilitan la programación de los pines de entrada y salida y de los puertos de comunicación, así como otras librerías para operaciones específicas. El propio IDE ya incluye estas librerías de forma automática y no es necesario declararlas expresamente. Otra diferencia frente a C++ standard es la estructuctura del programa.

Toda la información para programar Arduino se encuentra en el reference de la web de Arduino: https://www.arduino.cc/en/Reference/HomePage

Aplicaciones Arduino

Desde los inicios de Arduino y el HW Open Source, la industria encontró una forma sencilla y barata de implementar el Internet de las cosas y la Industria 4.0. Con estas herramientas es posible realizar tareas como:

  • Machinery automation.
  • Installation Control. (Thermal, Climate conditioning, Water treatment, Chemical products, Food, etc.).
  • Industrial monitoring.
  • Data acquisition.
  • etc.

IDE Arduino

IDE – entorno de desarrollo integrado, llamado IDE (sigla en inglés de integrated development environment), es un programa informático compuesto por un conjunto de herramientas de programación. Puede dedicarse en exclusiva a un solo lenguaje de programación o bien puede utilizarse para varios.

Un IDE es un entorno de programación que ha sido empaquetado como un programa de aplicación; es decir, que consiste en un editor de código, un compilador, un depurador y un constructor de interfaz gráfica (GUI). Además en el caso de Arduino incorpora las herramientas para cargar el programa ya compilado en la memoria flash del hardware.

El IDE de Arduino va a ser la herramienta de trabajo con Arduino y habrá que conocer su funcionamiento.

Los programas de arduino están compuestos por un solo fichero con extensión “ino”, aunque es posible organizarlo en varios ficheros. El fichero principal siempre debe estar en una carpeta con el mismo nombre que el fichero.

Anteriormente a la versión 1.x de Arduino se usaba la extensión “pde”. Cuando se pasó a la versión 1.x hubo grandes cambios, que deben tenerse en cuenta si se usa el código antiguo.

Código fuente del IDE de Arduino está disponible en: https://github.com/arduino/Arduino/  y las instrucciones para construir el IDE desde código fuente pueden verse en: https://github.com/arduino/Arduino/wiki/Building-Arduino

Para instalar el IDE de Arduino seguir las instrucciones de: https://aprendiendoarduino.wordpress.com/2016/06/26/instalacion-software-y-configuracion/

Este es el aspecto del IDE:

Las novedades de la nueva versión 1.6 del IDE:

  • Soporte multiplataforma de arduino
  • Detección automática de la placa conectada
  • Muestra memoria Flash y SRAM ocupada por un sketch o proyecto
  • Autoguardado al compilar y cargar sketch
  • Carga de sketch vía red (wifi o ethernet) para Arduino Yun.

El IDE de Arduino es multiplataforma y en caso de instalar el IDE Arduino en otros sistemas operativos estas son las instrucciones:

NOTA: para usuarios de linux/debian, el IDE Arduino está en los repositorios oficiales, pero instalará una versión antigua del IDE. Por lo tanto aunque funcione “apt-get install arduino “, es recomendable hacer la instalación según https://www.arduino.cc/en/Guide/Linux. Para ver qué versión se instalará desde el repositorio oficial usar el comando “apt-cache showpkg arduino”

Conozcamos este nuevo entorno de trabajo:

IMPORTANTE: Para conocer el entorno de programación a fondo ver: http://arduino.cc/en/Guide/Environment

Ver cada uno de los menús y opciones que tiene, los más importantes ahora son:

  • Botones de Verificar y Subir
  • Botón Monitor Serie
  • Consola de Error
  • Menú herramientas Placa y Puerto
  • Puerto y placa seleccionada
  • Menú preferencias
  • Proyecto/Sketch
  • Resaltado de palabras clave

Monitor serie

El monitor serie muestra los datos enviados por el Arduino a través del puerto serie también nos permite mandar datos al Arduino mediante el puerto serie.

Hay disponibles alternativas al monitor serie que en algunas circunstancias podemos necesitar puesto que el incluido en el IDE de Arduino es bastante sencillo, pero generalmente suficiente.

Una buena alternativa muy completa es el btaru terminal: https://sites.google.com/site/terminalbpp/

Arduino Serial Plotter. Desde la versión 1.6.6 del IDE de Arduino disponemos de la herramienta Arduino Serial Plotter que nos permite hacer gráficas de los datos mandados por puerto serie.

Cargar Programa en Arduino

El IDE de Arduino contiene un editor de texto para escribir nuestro sketch, una consola de error y un área con los menús y los botones que realizan las funciones más comunes como son abrir sketch, guardar sketch, compilar y cargar programa.

Cuando cargamos un programa en Arduino, estamos usando el bootloader de Arduino, que es un pequeño programa cargado en el microcontrolador que permite subir el código sin usar hardware adicional. El bootloader está activo unos segundos cuando se resetea la placa, después comienza el programa que tenga cargado el Arduino en su memoria Flash. El led integrado en la placa (pin 13) parpadea cuando el bootloader se ejecuta.

Configuración inicial del IDE

Después de la instalación, lo primero es configurar el IDE para facilitar la edición de nuestros programas, que nos muestre toda la información de compilación y subida de programas a Arduino y que nos muestre por pantalla todos los warnings del compilador. Cuanta más información tengamos, más fácil será localizar un problema.

Para ello, entrar en el menú Archivo → preferencias y activar:

  • Números de Línea
  • Mostrar salida detallada en la compilación y al subir un sketch
  • Configurar la ruta de nuestro workspace
  • Advertencia del compilador: Todos
  • Asociar extensión .ino a nuestro IDE
  • Habilitar plegado de código
  • Verificar el código después de subir

Desde esta pantalla configuramos donde se guardan las preferencias, sketches y librerías, de forma que al instalar una actualización mantenemos todos los datos o si instalamos varios IDEs van a compartir estos datos.

  • Las preferencias se guardan en el directorio: C:\Users\nombre_usuario\AppData\Local\Arduino15\, así como el listado de librerías y placas disponibles desde el gestor de librerías y tarjetas.
  • Los sketches y librerías se guardan en C:\Users\nombre_usuario\Documentos\Arduino

Gestor de Tarjetas

El gestor de tarjetas disponible desde el menú herramientas → Placa → Gestor de tarjetas, nos muestra a qué tipo de placas tenemos soporte para programarlas y además podemos instalar el soporte para otro tipo de placas que no son Arduino.

Por defecto tenemos instalado el soporte a las placas Arduino AVR que son la mayoría, pero nos permite instalar el soporte para los Arduino con MCU ARM de 32 bits como el Arduino MKR1000 o las Intel como el Arduino 101.

En este enlace explica como instalar nuevos cores: https://www.arduino.cc/en/Guide/Cores

Cuando tengamos algún problema, la primera opción es recurrir a la guía de Troubleshooting: http://arduino.cc/en/Guide/Troubleshooting

Otros IDEs

Además del IDE oficial disponemos de un IDE online en https://create.arduino.cc/

También hay simuladores de Arduino: https://aprendiendoarduino.wordpress.com/2016/06/27/simuladores-arduino/

Y por supuesto podemos programar Arduino con herramientas visuales como scratch o similares: https://aprendiendoarduino.wordpress.com/2016/06/28/programacion-visual-arduino/

Como hemos visto, hay dos arduinos: www.arduino.cc y www.arduino.org. Esto supone que hay dos IDEs que a simple vista son similares pero internamente hay bastantes diferencias. El IDE recomendado para trabajar al ser el más completo es el de www.arduino.cc.

IMPORTANTE: la versión del IDE de arduino.org es la 1.7.11, puede llevar a error y pensar que es una versión superior al IDE de arduino.cc que va por la version 1.6.13, pero no es cierto, se trata de un IDE diferente, es más, el IDE de arduino.org está menos evolucionado que el IDE de arduino.cc. Ver Issue: https://github.com/arduino-org/Arduino/issues/2

Si ya tenemos instalado el IDE de arduino.cc el instalador del IDE de arduino.org trata de desinstalarlo como si fuera una versión anterior, cuando realmente es un IDE diferente. Por este motivo es mejor hacer una instalación manual del IDE de arduino.org.

Software Arduino a fondo

Programación Arduino

El lenguaje de programación de Arduino es C++, aunque es posible programarlo en otros lenguajes. No es un C++ puro sino que es una adaptación que proveniente de avr-libc que provee de una librería de C de alta calidad para usar con GCC (compilador de C y C++) en los microcontroladores AVR de Atmel, denominado avr-gcc, y otras muchas funciones específicas para las MCU AVR de Atmel.

El lenguaje de los AVR es un entorno C para programar los chips de Atmel, la mayor parte del lenguaje o core de Arduino está escrito con constantes y funciones AVR y hay bastantes cosas que no son fáciles de hacer con el lenguaje de Arduino sin el uso de código AVR de la avr-libc.

Como el entorno de Arduino usa GCC para compilar el código, todas las variables de los puertos y de los registros de una MCU de Atmel son soportadas por el IDE de Arduino.

Las herramientas necesarias para programar los microcontroladores AVR de Atmel son avr-binutils, avr-gcc y avr-libc y ya están incluidas en el IDE de Arduino, cuando compilamos y cargamos un sketch estamos usando estas herramientas.

Para usar un microcontrolador ATmega8  de la familia AVR de 8 bits de Atmel, sin usar el IDE de Arduino, podemos programarlos usando C y C++ mediante una versión muy extendida de GCC (http://es.wikipedia.org/wiki/GNU_Compiler_Collection) denominda AVR-GCC http://winavr.sourceforge.net/ y http://sourceforge.net/projects/winavr/files/.

Una vez compilado el programa de C/C++ en un binario para AVR con AVR-GCC, necesitaremos “quemarlo” en el microcontrolador. Esto puede hacerse con AVRDUDE http://www.nongnu.org/avrdude/ o UISP http://www.nongnu.org/uisp/ o Atmel Studio http://www.atmel.com/tools/atmelstudio.aspx

Para Linux son necesarias estas herramientas:

  • gcc-avr
  • binutils-avr
  • gdb-avr
  • avr-libc
  • avrdude

Más información: http://playground.arduino.cc/Main/AVR

Un ejemplo de uso de funciones AVR que no dispone el entorno de Arduino es cuando queremos hacer delays muy pequeños. La función delayMircoseconds() puede hacer el delay más pequeño con el lenguaje de Arduino que es de 2 microsegundos.

Para delays menores es necesario usar ensamblador y en concreto la función ‘nop’ (no operation. Cada llamada a ‘nop’ ejecuta un ciclo de reloj que para 16 MHz es un retraso de 62,5 ns.

__asm__(“nop\n\t”);
__asm__(“nop\n\t””nop\n\t””nop\n\t””nop\n\t”);  \\ gang them up like this

También como hemos visto anteriormente, manipular los puertos y pines con el código AVR es más rápido que usar digitalWrite(). Más información https://www.arduino.cc/en/Reference/PortManipulation

Otro ejemplo es el uso de los métodos AVR cbi y sbi que se usan para hacer set o clear de bits el PORT y otras variables. Puedes encontrar estos métodos de código AVR en muchos sitios y ambos deben ser definidos en el sketch de Arduino para ser usados. Pegar este código al inicio del sketch y para usarlo simplemente poner una variable del puerto y el pin para hacer set o clear.

#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif

Pero para programar el 99% de lo que necesitemos en proyectos sencillos con Arduino, todo esto se puede resumir en que para programar nuestro lenguaje de programación de Arduino es el “Arduino Reference”, que es donde debemos recurrir para cualquier duda de programación que surja. Puesto que Arduino provee de unas librerías que facilitan la programación del microcontrolador. http://arduino.cc/en/Reference/HomePage

A medida que nuestro programa se hace más complejo o necesitamos que sea más rápido o queremos que tenga un uso de memoria más eficiente, entonces es cuando tendremos que recurrir a los comando AVR de la avr-libc.

El gran éxito de Arduino en parte se debe a que el IDE nos permite programar una MCU sin tener que saber todo lo anterior y nos da unas herramientas sencillas y específicas para programar los microcontroladores que suministra en sus placas. Por ejemplo veamos las funciones que nos ofrece para comunicar por el puerto serie: http://arduino.cc/en/Reference/Serial

El IDE de Arduino está basado en Processing: https://processing.org/, es un lenguaje de programación y entorno de desarrollo integrado de código abierto basado en Java, de fácil utilización, y que sirve como medio para la enseñanza y producción de proyectos multimedia e interactivos de diseño digital.

La librería Arduino está basada en wiring: http://wiring.org.co/ y es de donde nacieron las funciones que conocemos como digitalRead(), Serial.println(), etc…

Web del proyecto de Proccesing: https://processing.org/

Processing en github: https://github.com/processing/processing

Web del proyecto Wiring: http://wiring.org.co/

Wiring en github: https://github.com/WiringProject

Processing es útil cuando queremos comunicar Arduino con un ordenador y mostrar datos o guardar datos, pero también podemos usar python, .NET o cualquier otro lenguaje de programación que conozcamos.

Arduino trae algunos ejemplos para trabajar con Processing en el apartado communication, por ejemplo para hacer una gráfica de datos en http://arduino.cc/en/Tutorial/Graph

Ver el reference y la librería Serial de processing: https://processing.org/reference/ y https://processing.org/reference/libraries/serial/

También disponemos de una librería de Arduino para processing que nos permite interactuar entre processing y arduino: http://playground.arduino.cc/interfacing/processing

Por supuesto Arduino se puede programar en otros lenguajes y desde otros entornos de programación. Cabe destacar scratch como un lenguaje visual que hace innecesario saber programación o Atmel Studio que es la herramienta que proporciona Atmel. Más información en: https://aprendiendoarduino.wordpress.com/2014/11/20/tema-4-conceptos-basicos-de-programacion/

Más información: http://wittyrobo.com/mcu328p/c01_p01.html

Fuses

Los fuses son una parte muy importante en la programación de un microcontrolador. Solo es necesario configurarlos una vez, pero si no se hace correctamente podemos tener problemas.

Ya sabemos lo que es la flash, EEPROM y RAM como parte de la MCU, pero no se ha mencionado anteriormente que hay 3 bytes de memoria permanente llamados fuses. Los fuses determinan cómo se va a comportar el microcontrolador, si tiene bootloader, a que velocidad y voltaje va a funcionar, etc… Notar que a pesar de llamarse fuses (fusibles) puede configurarse una y otra vez y no tienen nada que ver con la protección de sobrecorrientes.

Los fuses están documentados en los datasheets, para el Arduino UNO ver página 348 de http://www.atmel.com/Images/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_datasheet.pdf

Con los fuses seleccionamos el comportamiento de:

  • Clock Source: puede ser un reloj externo, un reloj interno o un cristal externo.
  • Clock Startup: es el tiempo que necesita la fuente de reloj para estabilizarse.
  • Clock Output: habilita una salida de reloj en el PORT C2
  • Clock Divide: Divide por 8 el reloj
  • Reset Disable: convierte el pin de reset en un pin normal, habilitar este fuse hace que no se pueda programar por ISP
  • Brown-out Detect (BOD): selecciona a que voltaje hace disparar la protección de brownout. Para una MCU brownout es el voltaje al que es demasiado bajo para que funcione de una forma fiable a la velocidad de reloj.
  • Selecciona si se usa bootloader o no.
  • Selecciona cuánta memoria se reserva para el bootloader
  • Deshabilitar programación por el puerto serie

Con los fuses podemos bloquear algunos aspectos importamte de la MCU y podríamos brickearlo.

Los 3 bytes de los fuses son:

  • low byte fuse
  • high byte fuse
  • extended fuse

También hay un cuarto byte que se usa para programar los lock bits. Los lock bits pueden ser usados para restringir la lectura/escritura en la memoria de programa (flash), la zona de boot y la de aplicación tienen sus propios lock bits y es posible controlar el acceso a ellos de forma separada.

Para los fuses el 1 significa no usado y 0 usado.

Low Byte Fuses

High Byte Fuses

Extended Fuse Bits

Los valores por defecto el ATmega328p son:

  • Low fuse = 0x62 (B01100010)
  • High fuse = 0xD9 (B11011001)
  • Extended fuse = 0xFF (B11111111)

Los valores de los fuses de Arduino con el ATmega328p son:

  • Low fuse = 0xFF (B11111111)
  • High fuse = 0xDA (B11011110)
  • Extended fuse = 0x05 (B00000101)

En caso de usar el Optiboot bootloader, cambia el valor en el high byte fuse porque el tamaño del bootloader es inferior.

Más información de cada fuse en: http://www.martyncurrey.com/arduino-atmega-328p-fuse-settings/

Pero la mejor forma de ver los fuses es examinar AVR fuse calculator: http://www.engbedded.com/fusecalc/

Luego con los datos de los 3 bytes de los fuses, se pasan como argumento en el avr-dude al cargar el sketch y configurar los fuses. La configuración de los fuses es parte del proceso de cargar un bootloader. Editando el fichero boards.txt en la carpeta del IDE de Arduino en la ruta C:\Program Files (x86)\Arduino\hardware\arduino\avr se puede configurar el valor de los fuses.

Discusion en foro sobre el uso de fuses para proteger el binario de un sketch:  http://www.todopic.com.ar/foros/index.php?topic=44794.0. Es tan simple como agregar “-Ulock :w:03c:h” al final del comando que se le envía a avrdude.exe. Se configuran los lock bits como 1100 0011 (ojo que cambian los bits más significativos y menos significativos)

fuses

Cargar un programa desde el ide de arduino al microcontrolador. Luego desde el programa que mencionado ejecutar el mismo comando enviado por el ide de arduino a avrdude, pero cambiando la ruta del archivo .hex por un programa distinto y agregando al final “-Ulock :w:03c:h” Avrdude muestra en pantalla el avance en el proceso, pero al tratar de verificar el archivo enviado con el que recibe del microcontrolador, la comprobación falla. El microcontrolador se reinicia y ejecuta el programa nuevo correctamente, lo que demuestra que el Arduino no entregará el programa y que avrdude no es capaz de extraerlo del microcontrolador, ni tampoco con esta configuración es posible cargar ningún programa.

Ver el estado de los fuses de un Arduino se puede hacer con avr-dude y un programador, para ello hay que ejecutar el comando “avrdude -c arduino -p m328p -P COM3 -b 19200 -v”

Con AVR studio se puede leer y escribir los valores de los fuses. Pero si queremos cambiar los valores de los fuses con el IDE de Arduino podemos hacerlo de dos formas:

  • Option 1. El “quemado del bootloader” configura los fuses. Para configurar los fuses el ATmega328p se puede hacer en el proceso de cargar bootloader y toma la configuración de los fuses que hay en el fichero boards.txt de la placa correspondiente.
  • Option 2. Configurar los fuses manualmente, sin cargar un bootloader. Para ello necesitaremos la herramienta avr-dude mediante el comando.
    avrdude -c stk500v2 -p m328p -P /dev/ttyACM0 -b 19200 -U lfuse:w:0xFF:m -U hfuse:w:0xDE:m -U efuse:w:0x05:m”

Más información en:

IDE Arduino

El IDE de Arduino es open source y por lo tanto tenemos su código fuente y también podemos hacer nuestra propia versión del IDE. El proyecto del IDE de Arduino en github es: https://github.com/arduino/Arduino y las instrucciones para construir el binario desde el fuente está en https://github.com/arduino/Arduino/wiki/Building-Arduino

El software de Arduino se puede descargar en https://www.arduino.cc/en/Main/Software

Para actualizar Arduino y mantener las configuraciones, en Windows simplemente ejecutar el instalador, este desinstala la versión anterior y mantiene las librerías y sketchs siempre y cuando no hayamos guardado o modificado algo en el directorio de instalación.

También es posible tener varias versiones del IDE instaladas, simplemente usar la instalación manual con el archivo .zip

Para añadir al IDE Arduino soporte de placas de terceros: https://learn.adafruit.com/add-boards-arduino-v164?view=all

Lista no oficial de placas de terceros soportadas por el IDE de Arduino:

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls, que son ficheros json para añadir en el IDE y dar soporte con el nuevo gestor de placas.

Ruta donde se instalan los cores: C:\Users\enrique\AppData\Local\Arduino15\packages

La explicación de cada parámetro en configuración IDE: https://code.google.com/archive/p/arduino/wikis/Platforms.wikien la ruta: C:\Program Files (x86)\Arduino\hardware\arduino\avr

  • boards.txt: The Arduino environment supports multiple target boards with different chips (currently, only AVRs), CPU speeds, or bootloaders. These are defined in boards.txt. A board is specified by multiple variables prefixed with the same keyword (shown here as BOARD). The file consists of multiple lines with the format key=value. Lines that start with a # are comments and ignored.
  • programmers.txt: Programmers may be specified in the programmers.txt file in a platform. This file has a format similar to the boards.txt file, but with the other variables.
  • The bootloaders sub-folder of a platform contains the bootloaders for the boards in the platform. These should appear as .hex files in a sub-folder of the bootloaders folder. Often, the source code for the bootloader is also included, along with a Makefile for building the .hex file.
  • A core is a set of .c, .cpp, and .h files that implement the basic Arduino functions for a platform. Each core appears as a sub-folder of thecores sub-folder of a platform.

Guia para cambiar estilo IDE Arduino:

AVR libc

Es posible usar comandos estándar de C++ en la programación de Arduino siempre que estén incluidos en el avr libc, así como otros comandos propios para las MCUs AVR tambiñen incluidos en en avr-libc:

Dispositivos soportados por avr-libc: http://www.atmel.com/webdoc/AVRLibcReferenceManual/index_1supp_devices.html

Cuando creamos un programa en Arduino, automáticamente carga varios módulos como stdlib.h, math.h, etc…

Por ejemplo math.h:

El equivalente para linux de avr-libc es la glibc:

glibc como se puede ver tiene versiones para diferentes arquitecturas de los ordenadores como i386, i686, etc… para usar las instrucciones de cada una de sus arquitecturas.

Más información sobre MCUs AVR:

WinAVR

WinAVR es una herramienta importante para el desarrollo de MCUs AVR, incluso después de instalar Atmel Studio como IDE, es recomendable instalar WinAVR.

WinAVR (pronunciado “whenever”) es una suite compuesta de herramientas de desarrollo opensource para los microcontroladores AVR sobre plataforma Windows. Incluye el compilador GNU GCC para C y C++.

Herramientas WinAVR:

  • avr-gcc (compiler)
  • avrdude (programmer)
  • avr-gdb (debugger)
  • avr-libc (with a good HTML help Documentation)
  • and more …..

Web del proyecto:

Más información:

Tutoriales de programación AVR:

Interesante información sobre avr-lib en Wiring y Arduino: https://ccrma.stanford.edu/~juanig/articles/wiriavrlib/wiriavrlib.html

Proceso de compilación

GCC es un conjunto de compiladores que se considera el estándar para los Sistemas Operativos derivados de UNIX y requiere de un conjunto de aplicaciones conocidas como binutils que son unas herramientas de programación para la manipulación de código de objeto.

GCC soporta varios lenguajes y diferentes arquitecturas de HW::

Como GCC está construido para ejecutarse en un sistema como Linux, Windows o mac OS, pero para generar código para un microcontrolador AVR, entonces se denomina avr-gcc que es una versión de GCC solo para arquitecturas AVR. avr-gcc es el compilador que usa el IDE de arduino para convertir el sketch en C++ a un fichero binario (.hex) que es el que se carga en la flash del MCU y que ejecuta.

avr-gcc se puede usar directamente o a través de un IDE como el de Arduino o el Atmel Studio.

En el caso de Arduino el proceso de construcción para que el código escrito llegue a la placa es el siguiente:

  • El IDE verifica el código y comprueba que la sintaxis del código es correcta en C y C++
  • Luego pasa al compilador avr-gcc, que convierte el código en C++ en instrucciones que entiende el microcontrolador.
  • Después el código es combinado con las librerías estándar de Arduino, que son las que ofrecen las funciones básicas como digitalWrite() o Serial.println().
  • El resultado es un fichero hex que contiene los bytes que van a ser grabado en la memoria flash de Arduino.
  • Finalmente el fichero es cargado en la placa Arduino transmitiendolo sobre el USB o la conexión serie si hay un bootloader cargado o sino con un hardware externo (programador).

Cuando un sketch contiene múltiples ficheros, es compilado y los ficheros con extensiones .c o .cpp se compilan de forma separada y los ficheros con otras extensiones se concatenan juntos al fichero del sketch principal antes de pasarlo al compilador. Para usar ficheros con extensión .h, es necesario incluirlos con #include usando “comillas dobles” y no <>

El entorno de Arduino, antes de compilar también hace algunas modificaciones como añadir al principio del sketch #include “Arduino.h”. También el entorno de Arduino busca las definiciones de las funciones en el sketch principal y crea las declaraciones (prototypes) para ellas, estas se insertan después de los comentarios y las directivas de preprocesamiento, pero antes del resto de código, esto significa que si se quiere usar un tipo de dato como argumento de una función, debe declararse dentro de un fichero de cabecera separado.

El entorno de Arduino soporta múltiples placas con diferentes MCUs (no solo AVR), todo los datos de la placa están definidos en el fichero boards.txt en C:\Program Files (x86)\Arduino\hardware\arduino\avr. A la hora de compilar las opciones se toman del fichero boards.txt en la opción de build.

Cuando se compila desde el IDE de Arduino cono avr-gcc, las rutas donde se busca cuando se hace un include son:

  • El directorio del core de la placa <ARDUINO>/hardware/core/<CORE>/
  • El directorio de avr include <ARDUINO>/hardware/tools/avr/avr/include/
  • Cualquiera de los directorios de librerías <ARDUINO>/hardware/libraries/ o C:\Users\<USER>\Documents\Arduino\libraries

Cuando un sketch se verifica, se genera el fichero compilador en un directorio temporal del SO. Todos los ficheros .c y .cpp son compilados y la salida es un fichero .o (object file), tanto el del sktech final como otros que haya en el directorio del sketch o los de las librerías incluidas. Los fichero .o son enlazados todos juntos en una librería estática y el fichero del sketch principal. Solo las partes de las librerías necesitadas para el sketch son incluidas en el fichero final .hex, reduciendo el tamaño de la mayoría de los sketches.

El fichero .hex es la salida final de la compilación y es cargado en la memoria flash de Arduino. Este .hex es cargado en Arduino mediante avrdude y este proceso es controlado por las variables de las placas en el fichero de boards.txt dentro de las opciones “upload”

Para que me guarde los hex en una carpeta concreta: http://forum.arduino.cc/index.php?topic=142706.0

Durante el proceso de compilación se genera un fichero intermedio con extensión .elf que contiene el código máquina y otra información relacionado con información de la memoria y debug. El fichero elf (Executable and Linking Format), es el formato estándar para ficheros ejecutables, objetos de código y librerías compartidas. Elf es como una dll y consiste en unos enlaces simbólicos y tablas que pueden cargarse en una zona de memoria. Los fichero elf tienen varias secciones como datos, textos, etc.. Este fichero se suele usar para debug con emuladores.

Durante el proceso de compilación y carga, el IDE de Arduino muestra mucha información (hay que activarlo antes, ver https://aprendiendoarduino.wordpress.com/2016/06/26/instalacion-software-y-configuracion/) que puede resultar de ayuda para saber lo que está pasando durante el proceso. La herramienta que convierte el fichero .elf a .hex es avr-objcopy.

Más información:

Cómo compilar un sketch de Arduino con makefile:

Opciones de compilación:

Esta imagen muestra todo el proceso:

Información sobre las binutils: http://www.atmel.com/webdoc/AVRLibcReferenceManual/overview_1overview_binutils.html

Arduino también nos ofrece la posibilidad de una herramienta de línea de comandos para compilar los sketches de Arduino llamada Arduino Builder: https://github.com/arduino/arduino-builder, siendo uan herramienta muy intersante para hacer integración continua https://github.com/arduino/arduino-builder/wiki/Doing-continuous-integration-with-arduino-builder o testeo de nuestro softwatre (TDD).

También hay interfaces gráficos para GCC:

Probar/Ejercicio: El compilador de avr-gcc cuando detecta lineas iguales de Serial.print() no aumenta la memoria del static data porque lo reconoce y la guarda una sola vez en RAM y la repite al llamarla. Tampoco aumenta el tamaño del hex.

Ensamblador

Ensamblador es un lenguaje de bajo nivel. Consiste en una lista de instrucciones que no son de ninguna manera comparable a cualquier otro lenguaje como C, Basic o Pascal. El AVR tiene alrededor de 130 instrucciones, dependiendo del tipo, periféricos y tamaño del microcontrolador. En este link está el manual de las instrucciones con su respectiva explicación, y en este otro link se encuentra la guia de usuario de AVR Assembler. Se puede encontrar más información en http://www.avrbeginners.net/ y en http://www.avrfreaks.net/

Como ya hemos visto Arduino podemos programarlo en C puro, pero también podríamos programarlo en ensamblador, aunque no es una opción recomendable. Sin embargo como veremos podremos obtener el código en ensamblador de nuestro sketch.

Sin embargo, podría ser útil en determinadas situaciones insertar código en ensamblador dentro de nuestro sketch de Arduino. El compilador GNU C para procesadores Atmel AVR RISC procesadores permite incrustar el código de lenguaje ensamblador en programas C. Esta característica se puede utilizar para optimizar manualmente las partes críticas de tiempo del software o utilizar una instrucción de procesador específico, que no están disponibles en el lenguaje C.

Las instrucciones de cada procesador se pueden ver en los datasheet correspondientes y para el caso de los AVR de 8 bit en:

AVR Assembler User Guide: http://www.atmel.com/Images/doc1022.pdf

Para insertar instrucciones de ensamblador en C ver: Inline assembler cookbook: http://www.nongnu.org/avr-libc/user-manual/inline_asm.html, simplemente poner en el código C la instrucción asm volatile(); pasando como parámetro el código entre comillas.

Más información:

Proceso de Carga del Sketch

Una vez compilado y obtenido el fichero binario, hay que cargarlo en la memoria flash de Arduino, para ello el IDE de Arduino usa una herramienta llamada avr-dude.

Cuando tenemos problemas al cargar un sketch de Arduino, el problema suele venir de avrdude y en este enlace habla de los problemas y sus soluciones http://elcajondeardu.blogspot.com.es/2016/03/avrdude-nos-lo-explica-rufian-rufian-en.html

Página del proyecto avr-dude:

Manual del AVRdude:

Hay versiones con GUI para avr-dude que nos permiten cargar el sketch con la opciones que queramos.

Usar avr-dude con atmel studio y Arduino: http://wittyrobo.com/mcu328p/c04_p01.html

Uso de Arduino uploader:

Tutorial para usar AVRdude:

Adicionalmente se disponen de otras herramientas para la MCUs de AVR:

Soporte a tarjetas no oficiales con IDE Arduino

Al igual que hemos visto las herramientas necesarias para programar los microcontroladores AVR de Atmel y que necesitamos de una librería avr-libc, un compilador avr-gcc y un programa para cargar el .hex al microcontrolador, lo que compone el soporte en el IDE de Arduino para estos microcontroladores, en caso de querer programar otras MCUs, necesitaremos instalar las correspondientes herramientas para estos microcontroladores.

El proceso de dar soporte a otras tarjetas/microcontroladores en el IDE de Arduino se ha facilitado mucho, disponiendo de unos ficheros json que se descarga el IDE de Arduino y con ellos el IDE se descarga las herramientas necesarias y configura el IDE de Arduino para esas MCUs.

Instalar soporte IDE a otras placas:

IMPORTANTE: especificaciones de formato a usar en el IDE de Arduino para soporte de nuevas placas: https://github.com/arduino/Arduino/wiki/Arduino-IDE-1.5-3rd-party-Hardware-specification

Arduino ARM

Por ejemplo las herramienta usadas por Arduino para las placas basadas en microcontroladores ARM como el Arduino MKR1000, son las GNU ARM Embedded Toolchain https://launchpad.net/gcc-arm-embedded que es mantenido por los empleados de ARM. Usa gcc y newlib: https://sourceware.org/newlib/ y accesible el codigo fuente vía git en https://sourceware.org/git/gitweb.cgi?p=newlib-htdocs.git y git://sourceware.org/git/newlib-cygwin.git

Para programar la flash en los microcontroladores Atmel ARM de la familia SAM usar BOSSA: http://www.shumatech.com/web/products/bossa y su código fuente está en https://sourceforge.net/p/b-o-s-s-a/code/ref/master~/

También se usa otra herramienta llamada OpenOCD (Open On-Chip Debugger) http://openocd.org/ y ofrece soporte a la programación y debug, soportando muchos hardware debuggers.

Documentación: http://openocd.org/documentation/

Código fuente: https://sourceforge.net/p/openocd/code/ci/master/tree/