Archivo de la etiqueta: Wemos D1 mini

Ejercicios Finales

Veamos unos ejercicios completos con todo lo aprendido durante el curso.

Este ejercicio consiste en el montaje de 15 nodos remotos basados en Wemos D1 mini que gestionaremos con Node-RED y 15 Raspberry Pi con un led y un pulsador cada una y que además ejecutarán Node-RED localmente.

Montaje

Esquema de conexión nodo Remoto Wemos D1 Mini basado en:

Esquema de conexión RAspberry Pi:

  • Pin LED: 12 (GPIO 18) 
  • Pin Pulsador: 16 (GPIO 23) (Usando la resistencia interna de Pulldown)

Preparación

La programación de los nodos remotos basados en ESP8266 se hará mediante Node-RED ejecutado en cada Raspberry Pi, para ello se instalará un firmware que puede obtenerse de: https://github.com/jecrespo/Curso-Node-RED/blob/master/04-Ejercicio%20Final/firmware-Ejercicio_Final/firmware-Ejercicio_Final.ino.

NOTA: este firmware es para el nodo 14, pero en caso de que el nodo sea otro nº de nodo sustituir estas líneas, siendo X = 1, 2, 3, 4 ,5, 6, ….:

  • const char* publish_10sec = “nodoX/dato10s”;
  • const char* publish_60sec = “nodoX/dato60s”;
  • const char* publish_reset = “nodoX/reset”;
  • const char* subs_led = “nodoX/led”;
  • const char* subs_rele = “nodoX/rele”;
  • if (client.connect(“wemosd1mini187222X”,”usuario_mosquitto”,”password_mosquitto”))

Este firmware publica en un topic cada 10 segundos y en otro cada 60 segundos. Los topics son:

  • nodoX/dato10s
  • nodoX/dato60s

En caso de que el nodo se resete publica en el topic: nodoX/reset

Los nodos estás suscrito a dos topic:

  • nodoX/led – enciende y apaga el led integrado de ESP8266
  • nodoX/rele – enciende y apaga el relé

Para el control del LED y botón de Raspberry Pi, se hará mediante la programación en cada uno de los Node-RED de cada Raspberry Pi.

  • RPiX/led – topic al que se suscribe para indicar si se enciende o apaga
  • RPiX/pulsador – topic al que publica el estado: pulsado (1) o liberado (0)

Testeo del Sistema

Una vez configurado todo el sistema comprobar que cada nodo y Raspberry Pi está publicando los datos y funciona el control al modificar los valores de los topics a los que están suscritos.

Para ello usar un cliente MQTT como MQTT.fx:

  • suscrito a los topics:
    • nodoX/dato10s
    • nodoX/dato60s
    • nodoX/reset
    • RPiX/pulsador
  • publicando a los topics:
    • nodoX/led
    • nodoX/rele
    • RPiX/led

Una vez comprobado que leo los valores que publican los nodos y que puedo modificar el estado de los leds y relé publicando en los topics, pasamos a programar el sistema completo usando Node-RED.

Todo el código de los ejercicios: https://github.com/jecrespo/Curso-Node-RED/tree/master/04-Ejercicio%20Final

Ejercicio 1 – Dashboard

Configura Node-RED para que se vea un dashboard “Home” con tres grupos:

  • Suscripciones: las 3 suscripciones y botón que resete los valores
  • Pulsadores: dos botones para encender led y relé de nodo remoto
  • RPi: un pulsador que maneje el LED de la RPi y un gauge con el estado del pulsador.

Además al pulsar el pulsador encender el led detectando flaco, una pulsación enciende y otra pulsación apaga.

La configuración en Node-RED es:

Código: https://github.com/jecrespo/Curso-Node-RED/blob/master/04-Ejercicio%20Final/Ejercicio_1/Ejercicio_1-1.json

Código: https://github.com/jecrespo/Curso-Node-RED/blob/master/04-Ejercicio%20Final/Ejercicio_1/Ejercicio_1-2.json

Ejercicio 2 – Interacción por Grupos

Crear un nuevo grupo del dashboard Home llamado “Control Relés” con 3 botones que encienda:

  • Botón 1: controla relés 1, 2, 3, 4, 5
  • Botón 2: controla relés 6, 7, 8, 9, 10
  • Botón 3: controla relés 11, 12, 13, 14, 15

Dashboard

Nodos

Código: https://github.com/jecrespo/Curso-Node-RED/blob/master/04-Ejercicio%20Final/Ejercicio_2/Ejercicio_2.json

Ejercicio 3 – Seguridad

Poner un pin para encender los Reles, de forma que si no hay pin no se puede encender desde el dashboard. Simular una cerradura de forma que al poner el pin correcto se abre y luego a los 5 segundos se cierra.

Mostar en el dashboard el estado de la cerradura.

Crear un tab nuevo en el dashboard llamado pin de seguridad

Basarse en el flujo: https://flows.nodered.org/flow/7bcb0b049df4fa3c962294137ebaec19

Hacer el flujo como un subflow.

Dashboard

Flujo

Subflow

Código:

Ejercicio 4 – Email y SMS

Hacer un formulario en el dashboard para mandar un correo electrónico y otro para mandar un SMS usando el servicio de Twilio: https://www.twilio.com/

Dashboard

Flujo

Código: https://github.com/jecrespo/Curso-Node-RED/blob/master/04-Ejercicio%20Final/Ejercicio_4/Ejercicio_4.json

Luego usar esta configuración para enviar un correo y un SMS cuando se pulse el botón de la Raspberry Pi y el relé del nodo remoto 14 esté encendido, viéndolo en un dashboard.

Ejercicio 5 – Imágenes

Coger mediante Node-RED la imagen publicada en http://www.aprendiendoarduino.com/servicios/imagen.jpg y que se actualiza cada 30 segundos en el servidor.

Mostrar la imagen en el dashboard y su información.

Publicar en el topic raspberrypi/image la imagen por MQTT para poder reutilizarla.

Mandar la imagen por email al pulsar un botón.

Dashboard

Flujo

Código: https://github.com/jecrespo/Curso-Node-RED/blob/master/04-Ejercicio%20Final/Ejercicio_5/Ejercicio_5.json

Probar con otros servicios online a coger vídeo o imagen y tratarlo en Node-RED

Ejercicio 6 – Twitter

Hacer un flujo que tuitee algo. Para ello es necesario darse de alta en: https://developer.twitter.com/en/apps

Hacer un flujo que monitorice un hashtag (p.e. #Rioja), lo publique en cloudMQTT y lo guarde en una BBDD MySQL.

Flujo

Código: https://github.com/jecrespo/Curso-Node-RED/blob/master/04-Ejercicio%20Final/Ejercicio_6/Ejercicio_6.json

Ejercicio 7 – Open Weather Map

Usando el node de OpenWeatherMap, hacer un dashboard con la temperatura, humedad y presión donde se actualice el dato en un gauge y se haga una gráfica que muestre los últimos 7 días.

Mandar el dato de la temperatura a los nodos remotos, para ello publicar en el topic “nodoX/temperatura” el dato de temperatura y comprobar que llegan, para ello modificar el firmware para que los nodos remotos estén suscritos y lo muestren por el puerto serie.

Hacer un botón para que mande la predicción de los próximos 5 días al correo electrónico.

Dashboard

Flujo

Código: https://github.com/jecrespo/Curso-Node-RED/blob/master/04-Ejercicio%20Final/Ejercicio_7/Ejercicio_7.json

Ejercicio 8 – Telegram

Hacer un bot de Telegram con Node-RED que mande mensajes a grupos o canales y que responda a determinados comandos.

Para crear un bot de telegram: https://core.telegram.org/bots

Para añadir comandos al bot:

  • /setcommands
  • @aprendiendoarduino_bot

Pasar los comandos:

help – Ayuda
start – Inicio
enciende – Enciende Led
apaga – Apaga led
lee – Muestra datos broker

Y ya tengo los comandos configurados:

  • /help
  • /start
  • /enciende
  • /apaga
  • /lee

Para configurar el bot en Telegram solo hace falta poner el nombre del bot y el token.

Crear un canal o un grupo y hacer un flujo sencillo que al pulsar mande un un mensaje por Telegram a tu usuario y a al grupo o canal.

Ahora queda que desde Node-RED lea los comandos y responda. Al mandar el comando /enciende el LED de la Raspberry Pi al mandar el comando /apaga el LED de la Raspberry Pi. El comando /lee me devuelve el estado del LED.

Una forma de hacer esto es publicando el el topic /raspberrypi/led el valor ON u OFF y ya tengo otro flujo hecho en el ejercicio 1.

Para saber el estado, se puede guardar en una variable de flujo que se actualiza con el topic /raspberrypi/led de forma que no solo cuando modifico desde el bot sino desde otros lugares.

Flujo

Código: https://github.com/jecrespo/Curso-Node-RED/blob/master/04-Ejercicio%20Final/Ejercicio_8/Ejercicio_8.json

Ejemplos Node-RED y MQTT

Node-RED y MQTT

Sólo tienes que arrastrar el nodo mqtt que está en la categoría input al flujo.

sistema alarma node-red

Ahora hay que configurarlo. Aquí es donde vemos la potencia de Node-RED. Cuando utilizamos una tecnología, nos centramos en lo superficial. En el caso de MQTT lo único que tenemos que hacer es configurar el broker y el topic.

Al tratarse de un nodo de entrada, lo que hace es recibir los mensajes publicados en un topic es decir, se suscribe al topic. Haz doble click sobre el nodo para que abra el panel de configuración.

En el panel de configuración MQTT vamos a configurar primero el broker MQTT. Haz click en el lápiz que aparece en Server.

sistema alarma node-red

Esto abre un nuevo panel de configuración. Pon un nombre al broker MQTT por ejemplo RASPBERRY PI MOSQUITTO. En Server tienes que poner la IP donde está instalado el broker MQTT y el puerto que utiliza, normalmente es el 1883.

Esta sería la configuración mínima. No te olvides de hacer click en el botón Add.

Después de esta acción volverás al panel de configuración del nodo mqtt y automáticamente, habrá seleccionado el broker MQTT que acabamos de crear.

Por último, vamos a rellenar el campo de Topic. Debe ser el mismo que hemos puesto en Arduino o el ESP8266, /casa/puerta/alarma. Una vez lo tengas, haz click en Done.

sistema alarma node-red

Ahora sólo nos queda probarlo. Para ello vamos a utilizar el mismo nodo debug de la categoría output que hemos utilizado antes.

Arrástralo al flujo, conecta los dos nodos y haz click en el botón Deploy.

sistema alarma node-red

Para probar el sistema lo podemos hacer de dos formas. Desde una terminal de Raspberry Pi podemos publicar un mensaje en el topic o directamente conectando la placa y simulando que abren la puerta.

El resultado sería el siguiente.

sistema alarma node-red

Ejemplo

Vamos a usar los Wemos D1 mini, para integrarlos como nodos remotos y programarlos desde Node-RED.

Esquema:

El firmware para los nodos remotos:

Cada firmware ya está configurado para solo configurar el topic donde va a publicar y el topic al que se suscribe:

  • RELE: Paso ON y OFF
  • OLED: Paso el string que va a mostrar por pantalla
  • LEDS: 7 topics donde paso el color en formato RGB y el brillo

Probar cada firmware y hacer un programa sencillo para interactuar con ellos.

Completos tutoriales:

Anexo I – Material Prácticas Cursos y Requisitos Técnicos

Para realizar cualquiera de los cursos de los itinerarios es necesario:

  • Un Ordenador PC o portátil por alumno con al menos un puerto USB accesible
  • El PC de cada alumno deberá tener un sistema operativo instalado, ya sea un sistema Windows o un sistema Linux. 
  • Acceso a Internet
  • Red Wifi
  • Espacio equipado con mobiliario adecuado al número de alumnos

Todo el software y documentación utilizado en el curso es libre con licencia creative commons o similar y publicado en https://www.aprendiendoarduino.com/

Listado de material orientativo para realizar las prácticas de cada itinerario por alumno:

Material Formación Itinerario Arduino

El material necesario para realizar las prácticas del curso consiste en un Arduino Starter Kit (https://www.arduino.cc/en/Main/ArduinoStarterKit) o similar compuesto por al menos:

  • 1x Arduino UNO Rev3 o equivalente
  • 1x Cable USB
  • 1x Breadboard/Protoboard
  • 1x Adaptador para la batería de 9 Voltios
  • 30x Puentes de conexión para la protoboard (jumpers)
  • 3x Fotorresistencias LDR
  • 3x Potenciometros de 10K o equivalentes
  • 3x Pulsadores
  • 1x Sensor de temperatura (TMP36, DHT11 o similar)
  • 1x Sensor de inclinación
  • 1x LCD alfanumérico I2C (16×2 caracteres)
  • 10x LED de diferentes colores
  • 1x Motor CC 6 o 9 Voltios
  • 1x Servo motor
  • 1x Piezo Buzzer
  • Varias Resistencias de diversas capacidades
  • 1x Módulo IMU MPU6050 o equivalente
  • 1x Módulo bluetooth HC-05 o equivalente
  • 1x Breakout board relé
  • 1x Shield Ethernet
  • 1x placa compatible ESP8266 (p.e. Wemos D1 Mini o NodeMCU)
  • Otros sensores para Arduino (p.e. infrarrojos, sensor de agua, etc…)

NOTA: se aconseja que los módulo sean de tipo breakout board fáciles de conectar

Material Formación Itinerario Raspberry Pi

  • 1x Raspberry Pi con Carcasa 
  • 1x tarjeta micro SD 16Gb
  • 1x cable alimentación 
  • 1x cable HDMI
  • 1x Adaptador GPIO a protoboard
  • 1x Breadboard/Protoboard
  • 30x Puentes de conexión para la protoboard (jumpers)
  • 3x Pulsadores
  • 3x Potenciometros de 10K o equivalentes
  • 1x Sensor de temperatura (TMP36, DHT11 o similar)
  • 1x Piezo Buzzer
  • 10x LED de diferentes colores
  • 1x Conversor analógico digital MCP3008 o equivalente
  • 1x Módulo IMU MPU6050 o equivalente
  • Otros dispositivos I2C (p.e. RTC, sonda temperatura, etc…)
  • Varias Resistencias de diversas capacidades

Material Formación Itinerario ESP8266/ESP32

  • 1x Wemos D1 min o NodeMCU o equivalente
  • 1x Wemos Wifi ESP32 OLED o equivalente
  • 1 x ESP32-CAM o equivalente
  • 1x shields para wemos D1 mini relé
  • 1x shields para wemos D1 mini neopixel
  • 1x shields para wemos D1 mini oled
  • 1x Cable USB
  • 1x Raspberry Pi con Carcasa 
  • 1x tarjeta micro SD 16Gb
  • 1x cable alimentación 
  • 1x cable HDMI
  • 1x Adaptador GPIO a protoboard
  • 1x Breadboard/Protoboard
  • 30x Puentes de conexión para la protoboard (jumpers)
  • 3x Fotorresistencias LDR
  • 3x Potenciometros de 10K o equivalentes
  • 3x Pulsadores
  • 1x Sensor de temperatura (TMP36, DHT11 o similar)
  • 10x LED de diferentes colores
  • 1x Piezo Buzzer
  • Varias Resistencias de diversas capacidades
  • 1x Módulo IMU MPU6050 o equivalente

Material Formación Itinerario IoT/Industria Conectada

  • 1x Arduino UNO Rev3 o equivalente
  • 1x Wemos D1 min o NodeMCU o equivalente
  • 1x shields para wemos D1 mini relé
  • 1x shields para wemos D1 mini oled
  • 1x Moteino con comunicación LoRa
  • 1x placa ESP32 con RFM95 868MHz por alumno (Adafruit Huzzah32, TTGO,…)
  • 1x gateway LoRaWAN 868MHz de interior por grupo
  • 1x Arduino MKR 1400 para conectividad GSM + SIM (p.e. hologram)
  • 1x Cable USB
  • 1x Breadboard/Protoboard
  • 30x Puentes de conexión para la protoboard (jumpers)
  • 3x Fotorresistencias LDR
  • 3x Potenciometros de 10K o equivalentes
  • 3x Pulsadores
  • 1x Sensor de temperatura (TMP36, DHT11 o similar)
  • 10x LED de diferentes colores
  • 1x Piezo Buzzer
  • Varias Resistencias de diversas capacidades
  • 1x Módulo IMU MPU6050 o equivalente
  • Otros sensores para Arduino (p.e. infrarrojos, sensor de agua, etc…)
  • Otros dispositivos I2C (p.e. RTC, sonda temperatura, etc…)

Opcionalmente:

  • 1x Módulo Ultra low power 2.4GHz RF nRF24L01+
  • 1x Kit XBee
  • 1x Arduino MKRWAN1300
  • 1x Servidor (VPS) por alumno

Material Formación Itinerario Digitalización Profesorado

  • 1x Arduino UNO Rev3 o equivalente
  • 1x Kit montaje escornabot y herramientas para montarlo
  • 1x Micro:bit
  • 1x Shield Micro:bit para expansión
  • 1x Raspberry Pi con Carcasa 
  • 1x tarjeta micro SD 16Gb
  • 1x cable alimentación 
  • 1x cable HDMI
  • 1x Adaptador GPIO a protoboard
  • 1x Cable USB
  • 1x Breadboard/Protoboard
  • 30x Puentes de conexión para la protoboard (jumpers)
  • 3x Fotorresistencias LDR
  • 3x Potenciometros de 10K o equivalentes
  • 3x Pulsadores
  • 1x Sensor de temperatura (TMP36, DHT11 o similar)
  • 1x Sensor de inclinación
  • 1x LCD alfanumérico I2C (16×2 caracteres)
  • 10x LED de diferentes colores
  • 1x Servo motor
  • 1x Piezo Buzzer
  • Varias Resistencias de diversas capacidades
  • 1x Módulo IMU MPU6050 o equivalente
  • 1x Módulo bluetooth HC-05 o equivalente
  • 1x Breakout board relé
  • 1x placa compatible ESP8266 (p.e. Wemos D1 Mini o NodeMCU)
  • Otros sensores para Arduino (p.e. infrarrojos, sensor de agua, etc…)
  • Otros dispositivos I2C (p.e. RTC, sonda temperatura, etc…)
  • Otros Actuadores y periféricos (p.e. teclado, pantalla TFT, etc…)

Material Formación Otros Cursos

Material común:

  • 1x Arduino UNO Rev3 o equivalente
  • 1x Cable USB
  • 1x Breadboard/Protoboard
  • 30x Puentes de conexión para la protoboard (jumpers)
  • 3x Fotorresistencias LDR
  • 3x Potenciometros de 10K o equivalentes
  • 3x Pulsadores
  • 1x Sensor de temperatura (TMP36, DHT11 o similar)
  • 1x Sensor de inclinación
  • 1x LCD alfanumérico I2C (16×2 caracteres)
  • 10x LED de diferentes colores
  • 1x Piezo Buzzer
  • Varias Resistencias de diversas capacidades
  • Otros sensores para Arduino (p.e. infrarrojos, sensor de agua, etc…)
  • Otros dispositivos I2C (p.e. RTC, sonda temperatura, etc…)
  • Otros Actuadores y periféricos (p.e. teclado, pantalla TFT, etc…)

PLCs Basados en Arduino:

  • 1x M-Duino básico
  • 1x Controllino o similar
  • 1x Revolution Pi

Cursos Node-RED:

  • 1x Raspberry Pi con Carcasa 
  • 1x tarjeta micro SD 16Gb
  • 1x cable alimentación 
  • 1x cable HDMI
  • 1x Adaptador GPIO a protoboard
  • 1x Wemos D1 min o NodeMCU o equivalente
  • 1x shields para wemos D1 mini relé
  • 1x shields para wemos D1 mini neopixel
  • 1x shields para wemos D1 mini oled

IoT en 90 Minutos

Vamos a crear un sistema IoT sencillo utilizando una placa basada en ESP8266, la plataforma Thingspeak para registrar los datos y la APP Blynk para controlar y monitorizar desde el móvil.

El objetivo es:

  • Monitorizar la temperatura y humedad de una sala remotamente desde el móvil
  • Encender desde el móvil la iluminación de la sala
  • Registrar todos los datos históricos de temperatura y humedad
  • Registrar las veces que se abre una puerta
  • Mandar avisos por alta temperatura. 
  • Mandar avisos cuando el sensor de puerta se abra.

Los avisos o notificaciones pueden ser:

Material Necesario

Hardware:

  • Wemos D1 mini
  • Sensor DHT11
  • Led + resistencia 220 ohms (para simular la iluminación) o Relé para la iluminación
  • Pulsador + Resistencia 10 kohms  (para simular la apertura de la puerta) o sensor magnético/infrarrojos.

Coste aproximado: 5 – 20 € dependiendo del material usado.

Software:

Coste del software y licencias: 0 €

Conexión Hardware

Esquema de conexión:

Pines utilizados:

  • D4: Led y también es el led integrado de la placa
  • D3: pulsador/puerta, tiene una resistencia de pull up integrada: OJO, este pin va al GPIO0 que control el arranque, asegurarse de no estar a masa/pulsado al reiniciar o cargar un nuevo programa
  • D2: sonda DHT11

El pulsador simula la apertura de la puerta y el led simula la iluminación de la sala.

Blynk

Blynk es una plataforma que permite que cualquiera pueda controlar fácilmente su proyecto Arduino con un dispositivo con sistema iOS o Android. Los usuarios tendrán ahora la posibilidad de crear una interfaz gráfica de usuario de “arrastrar y soltar” para su proyecto en cuestión de minutos y sin ningún gasto extra.

Blynk vendría a ser como tener una protoboard en tu dispositivo móvil, tablet o teléfono, que cuenta con todo lo que necesites usar, desde deslizadores y pantallas a gráficos y otros widgets funcionales que se pueden organizar en la pantalla un Arduino. Además te da la opción de poder recopilar datos de los sensores que montes en un proyecto. Funciona nada más sacarlo de la caja y conectarlo a la placa por Internet.

Arquitectura de Blynk:

Thingspeak

ThingSpeak es un plataforma de Internet of Things (IoT) que permite recoger y almacenar datos de sensores en la nube y desarrollar aplicaciones IoT. Thinkspeak también ofrece aplicaciones que permiten analizar y visualizar tus datos en MATLAB y actuar sobre los datos. Los datos de los sensores pueden ser enviados desde Arduino, Raspberry Pi, BeagleBone Black y otro HW.

Web: https://thingspeak.com/

Precios: https://thingspeak.com/prices

Pasos a seguir

Crear una cuenta en Thingspeak y configurar

Web: https://thingspeak.com/users/sign_up

Tutoriales:

Crear cuenta:

Crear un Nuevo Canal llamado: “Curso IoT”

Crear 3 Fields:

  • Temperatura – Guarda los datos de temperatura
  • Humedad – Guarda los datos de humedad
  • Puerta – Guarda las aperturas de puerta

Guarda la API Key y el número de canal

Instalar Blynk 

Getting Started: https://blynk.io/en/getting-started

Docs: https://docs.blynk.cc/

Instalar Blynk en el móvil: https://blynk.io/

Crear una cuenta en Blynk

Crear un nuevo proyecto llamado “IoT en 90 minutos”

Elegir Hardware, en este caso “Wemos D1 Mini”

Guardar el Auth Token. Auth Token es un identificador único que se necesita para conectar su hardware a su smartphone. Cada nuevo proyecto que cree tendrá su propio Auth Token. Obtendrá Auth Token automáticamente en su correo electrónico después de la creación del proyecto. También se puede copiar manualmente.

Añadir 3 widgets:

  • Un botón (Conectado al Pin D4)
  • Dos Gauge en los pines Virtuales V0 y V1 para temperatura y humedad

Virtual Pin: http://help.blynk.cc/en/articles/512061-what-is-virtual-pins

Configuración del Gauge:

  • Temperatura pin virtual V0
  • Humedad pin virtual V1
  • Modo push
  • Label: C para temperatura y % para Humedad

Configuración del Botón. poner en modo switch:

Aspecto final de la APP:

Ejecutar el programa

 

Preparar IDE Arduino

Instalar el IDE de Arduino:

Instalar el soporte para las placas basadas en ESP8266 en el IDE de Arduino

Instalar librerías necesarias en IDE Arduino desde el gestor de librerías:

 Realizar montaje de Wemos D1 mini

Personalizar el Firmware y Ejecutarlo

Configurar la Vista Pública en Thingspeak

Crear una vista pública, para ello en el canal ir a “sharing” y seleccionar “Share channel view with everyone”

Configurar la vista pública de Thingspeak, es una especie de dashboard donde pondremos:

  • Gráfica de Temperatura (Tipo Spline)
  • Display numérico Temperatura
  • Gráfica de Humedad  (Tipo Spline)
  • Display numérico Humedad
  • Gráfica apertura de puerta (Tipo Step)
  • Lamp Indicator, para ver el estado de la puerta abierto/cerrado
  • Un histograma para ver la variación de la temperatura

La vista debe quedar como esta: https://thingspeak.com/channels/635134

Configurar las Notificaciones en Thingspeak

Configurar avisos en Thingspeak cuando la temperatura sea mayor de 24 grados y cuando se abra la puerta. Para ello usaremos estas utilidades de thingspeak.

Notificaciones posibles:

  • Mandar un mensaje al panel: https://www.aprendiendoarduino.com/servicios/mensajes/index.html, servicio de #aprendiendoarduino para hacer una demo.
  • Enviar un mensaje a Telegram mediante un bot al canal https://t.me/aprendiendoarduino. Para ello es necesario crear un bot, añadirlo al canal y usar su API KEY desde thingspeak con ThingHTTP
  • Enviar un mensaje al canal #arduino_iot de https://aprendiendoarduino.slack.com/
  • Mandar un tweet usando ThingTweet, para ello debemos enlazar nuestra cuenta de Twitter.
  • Mandar un email con mailgun https://www.mailgun.com/, para ello debemos darnos de alta en mailgun y usar la API Key para que dispare el webhook configurado en ThingHTTP y mande un email
  • Para cualquier otra interacción se puede usar IFTTT. Se crea un webhook que se usa desde ThingHTTP y desde IFTTT disparamos el servicio que queramos.
  • Y cualquier otra que disponga de un webhook o API

Primero debe configurarse ThingHTTP para que llame a una API o webhook que dispare la notificación que deseamos. Para ello deberemos darnos de alta en el servicio que deseemos.

Para mandar un mensaje al panel: https://www.aprendiendoarduino.com/servicios/mensajes/index.html debo llamar a esta API:

Crear un nuevo ThingHTTP llamado “Manda Mensaje Alta Temperatura” y poner:

Crear un nuevo ThingHTTP llamado “Manda Mensaje Puerta Abierta” y poner:

NOTA: si no funciona la llamada al servicio de mensajes, mandar un correo a aprendiendoarduino@gmail.com

Una vez creados los elementos ThingHTTP que dispara la notificación queda crear los react, que son las condiciones en la que se disparan las notificaciones, donde diremos en qué condiciones se mandan las notificaciones. En nuestro caso:

  • Temperatura > 24 grados solo la primera vez que pase (Run action only the first time the condition is met: Trigger the action if the condition was previously false and is currently true.)
  • El valor del canal es 1 (Puerta abierta) cada vez que pase.

Crear un nuevo react llamado “Alta Temperatura IoT 90 minutos” con los siguientes parámetros:

Crear un nuevo react llamado “Puerta Abierta IoT 90 minutos” con los siguientes parámetros:

Probar que se muestran los mensajes en el panel https://www.aprendiendoarduino.com/servicios/mensajes/index.html

Si quisiéramos mandar un tweet, simplemente seleccionar en Action “ThingTweet” y poner el texto del tweet.

Identificación Horizontales Demo

Las horizontales o Building Blocks usados en IoT:

Para la demo:

  • Devices: Wemos D1 mini + sensor temperatura + pulsador + led + relé
  • Infraestructura de comunicación: Wifi
  • Gateway: Punto de Acceso Wifi
  • Protocolo: API HTTP y MQTT (transparente al usar las librerías de Blynk y Thingspeak)
  • Plataforma: Thingspeak y Blynk
  • Servicios: Almacenamiento de datos, gráficas, disparo de eventos y análisis de datos por Thingspeak, monitorización móvil por Blynk, notificaciones por IFTTT o plataforma propia.

Limitaciones de la solución utilizada:

  • Máximo número de envíos a plataforma: 15 segundos
  • Datos almacenados solo hasta un año o 3 millones de registros
  • Límite en el cálculo de datos
  • Gráficas simples
  • Depender de terceros para las notificaciones

Prácticas: Funciones Definidas por Usuario

Montaje Arduino UNO:

Montaje Wemos:

Ejercicio15 – Funciones

Hacer un menú interactivo con Arduino. Con todo lo visto anteriormente, hacer un ejemplo de un menú interactivo donde se dan 4 opciones y pulsando cada una de ellas se ejecuta una acción concreta. Si el valor pulsado no es ninguna de las opciones avisar y volver a mostrar el menú hasta que se pulse una opción correcta. Usar funciones para cada una de las opciones.

Opciones:

  • 1 – Encender led siguiente (paso por referencia la posición del led)
  • 2 – Sacar por pantalla el LCD que está encendido
  • 3 – Sonar el buzzer 5 segundos
  • 4 – Fin (entra en un bucle infinito y no sale)

Solución: https://codeshare.io/5NYRvm

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio15-Funciones

Ejercicio16 – Función Detecta flanco

Señales digitales:

Hacer una función que detecte flancos ascendentes y otras flancos descendentes, para ser reutilizada en otros proyectos.

Unificar estas dos funciones en una única función llamada detectaFlanco() donde le paso el pin y devuelve 1 si es flanco ascendente, -1 si es flanco descendente y 0 si no hay cambio de estado.

Ponerla en un ejemplo con alguno de los botones, usando este loop:

 
void loop() {
  int flanco = detectaFlanco(PIN_BOTON_A);
  if (flanco == 1)
    Serial.println("flanco ascendente");
  if (flanco == -1)
    Serial.println("flanco descendente");
}

Solución: https://codeshare.io/amkrV1

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio16-Funcion_Detecta_Flanco

Ejercicio17 – Función Detecta flanco dos pines

Para ejercicio detecta flanco, probar la función con los dos botones en los pines 2 y 3. La función detecta flanco solo funciona con un pulsador, pero cuando se intenta usar con dos pulsadores ya no funciona. Comprobar porqué.

Solución: https://codeshare.io/5NYrqr

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio17-Funcion_Detecta_Flanco_2Pines

La función para detectar flanco es la base para luego entender las clases y objetos y luego las librerías.

La solución es crear un objeto detecta flanco, para ello crear una clase y se puede distribuir mediante una librería como https://github.com/jecrespo/Detecta_Flanco_Libreria que se puede descargar desde https://github.com/jecrespo/Detecta_Flanco_Libreria/releases/tag/Version_1.0:

#include <DetectaFlanco.h>
#define PIN_BOTON_A 2
#define PIN_BOTON_B 3

DetectaFlanco df1(PIN_BOTON_A);
DetectaFlanco df2(PIN_BOTON_B);

void setup() {
  Serial.begin(9600);
  df1.inicio(INPUT_PULLUP);
  df2.inicio(INPUT);
}

void loop() {
  // put your main code here, to run repeatedly:
  int flanco1 = df1.comprueba();
  int flanco2 = df2.comprueba();

  if (flanco1 == 1)
    Serial.println("Flanco asc A");

  if (flanco1 == -1)
    Serial.println("Flanco desc A");

  if (flanco2 == 1)
    Serial.println("Flanco asc B");

  if (flanco2 == -1)
    Serial.println("Flanco asc B");

  delay(50); //Evitar rebotes
}

Ejercicio18 – Dado Digital

Usando las funciones de números aleatorios hacer un dado digital que genere un número aleatorio entre 1 y 6 y encienda un led aleatorio cada vez que se pulse el botón A. Usar el montaje del Wemos D1 mini

Usar la función de detección de flanco hecha en el anterior ejercicio.

Random Numbers

  • randomSeed() – Inicializa el generador de número pseudo-aleatorios
  • random() – Genera números pseudo-aleatorios

Paso 1 – Generar un valor aleatorio entre 1 y 6 al pulsar el botón

Paso 2 – Hacer girar el anillo led haciendo el efecto y que baje la velocidad

Paso 2 – Dejar fijo el nuevo número aleatorio

Solución: https://codeshare.io/anmypv

Hacer commit y pull del código en el repositorio “Curso Programacion Arduino 2019” que esté en una carpeta llamada Ejercicio18-Dado