Archivo de la etiqueta: ESP8266

Uso ESP8266 con Arduino (Puerto Serie)

El ESP8266 se puede usar con un microcontrolador como Arduino conectado por puerto serie y manejarlo con comandos hayes o programarlo como si de un microcontrolador se tratara con el IDE de Arduino usando el SDK https://github.com/esp8266/Arduino y usar el lenguaje de programación de Arduino (el core de Arduino).

En este capítulo vamos a ver como usarlo con el SDK NONOS donde manejamos el ESP8266 mediante comandos AT.

Web de recursos del ESP8266: http://espressif.com/en/products/hardware/esp8266ex/resources

Los SDK oficiales de expressif son:

El SDK RTOS está basado en FreeRTOS:

Guía de programación de ESP8266 RTOS SDK: http://espressif.com/sites/default/files/documentation/20a-esp8266_rtos_sdk_programming_guide_en.pdf

RTOS es un sistema operativo de tiempo real es un sistema operativo que ha sido desarrollado para aplicaciones de tiempo real. Como tal, se le exige corrección en sus respuestas bajo ciertas restricciones de tiempo. Si no las respeta, se dirá que el sistema ha fallado. Para garantizar el comportamiento correcto en el tiempo requerido se necesita que el sistema sea predecible.

Más información: https://es.wikipedia.org/wiki/Sistema_operativo_de_tiempo_real

SDK NONOS ESP8266

Las versiones del SDK NONOS para ESP8266 es la que usa comandos AT para manejarlos. Las verisiones pueden descargarse desde https://github.com/espressif/ESP8266_NONOS_SDK/releases

El firmware puede descargarse de: https://github.com/espressif/ESP8266_NONOS_SDK/tree/master/bin

Github de expressif: https://github.com/espressif

Pinout ESP8266:

Pines:

  • TX (goes to the 3.3V Rx of the UART USB adapter to the PC)
  • CH_PD (enable/power down, must be pulled to 3.3v directly or via resistor)
  • RESET
  • VCC (3.3v power supply)
  • GND (connect to power ground)
  • GPIO 2
  • GPIO 0 (leave open or pull up for normal, pull down to upload new firmware)
  • RX (goes to the 3.3V Tx of the UART USB adapter to the PC)

Para usar el ESP8266 con Arduino vamos a conectarnos por el puerto serie y mandar comandos AT (hayes) para manejarlo. Este es el esquema.

IMPORTANTE:

  • El ESP8266 va alimentado a 3,3V, ¡no alimentarlo con 5 voltios!
  • El ESP8266 necesita comunicarse vía serie a 3.3V y no tiene entradas tolerantes 5V, por lo que necesita la conversión de nivel para comunicarse con un microcontrolador 5V como la mayoría de los Arduinos

Sin embargo, esta segunda advertencia puede ser ignorada y conectar el puerto serie directamente a Arduino, pero existe el peligro de dañar el módulo.

Con un programador FTDI que tenga salida a 3.3V podemos hacer lo mismo que con un Arduino pero sin ningún peligro.

ESP8266 quick start guide: http://rancidbacon.com/files/kiwicon8/ESP8266_WiFi_Module_Quick_Start_Guide_v_1.0.4.pdf

Guia sparkfun del ESP8266: https://learn.sparkfun.com/tutorials/esp8266-thing-hookup-guide

Level Shifter

Los pines Rx y Tx del ESP8266 no son tolerantes a 5V, por lo tanto para trabajar seguro es conveniente usar un bi-directional level shifter: http://www.adafruit.com/datasheets/txb0108.pdf

Este tipos de dispositivos es necesario para comunicar Arduino con otras MCUs que van a 3.3V, con el ESP8266 y con Raspberry Pi entre otros.

Ejemplo de level shifter para usar con Arduino:

Por lo tanto la primera forma de usar el módulo ESP8266 es comunicarse con él a través del puerto serie y manejarlo mediante los comandos AT (hayes) que tiene en su firmware.

Comandos Hayes

El conjunto de comandos Hayes es un lenguaje desarrollado por la compañía Hayes Communications que prácticamente se convirtió en estándar abierto de comandos para configurar y parametrizar módems. Los caracteres «AT», que preceden a todos los comandos, significan «Atención», e hicieron que se conociera también a este conjunto de comandos como comandos AT. Midiendo la longitud de los bits se puede determinar en detalle la velocidad de transmisión.

Cheatsheet ESP8266: https://cdn.sparkfun.com/datasheets/Wireless/WiFi/ESP8266ModuleV1.pdf

Comandos hayes:

Comandos Hayes para ESP8266:

Proyectos con ESP8266:

Más información:

Videos:

Ejemplo de uso de comandos AT: http://www.seeed.cc/project_detail.html?id=1809

Firmware ESP8266

Como hemos hablado el módulo ESP8266 es un microcontrolador como los que hemos visto con Arduino y podemos cargarle un firmware con un programa que hayamos hecho y compilado con el IDE de Arduino o usar un firmware como el que viene por defecto que es el de comandos hayes.

Además de los firmwares anteriores tenemos otros firmware disponibles como el oficial basado en un RTOS.

Para descargar las herramientas y últimas versiones del firmware usar la web: https://espressif.com/en/products/hardware/esp8266ex/resources

Más información de como actualizar firmware (version actualizada en la parte de ejercicios):

Firmware Update

Para actualizar el firmware necesitamos descargar la herramienta “flash download tools” para el ESP8266 y el firmware con los comandos hayes, además aprovechamos para actualizar a la última versión del firmware.

Para programar recordar y actualizar firmware recordar que el pin GPIO0 debe estar a masa y que hay que un reset del módulo para comenzar la carga del nuevo firmware.

Descarga: https://espressif.com/en/products/hardware/esp8266ex/resources

Descargar la última versión de:

  • Tools / Flash Download Tools (ESP8266 & ESP32)
  • SDK & demos / ESP8266 NONOS SDK

Descargar la herramienta para cargar el firmware: Flash Download Tools (ESP8266 & ESP32) – V3.4.9.2 – 2017.07.17

El firmware para AT es: ESP8266 NONOS SDK V2.1.0 20170505 – V2.1.0 – 2017.05.05

Enlace al firmware: https://github.com/espressif/ESP8266_NONOS_SDK/tree/master/bin

Ficheros: https://github.com/espressif/ESP8266_NONOS_SDK/tree/v2.1.0/bin

Abrir la aplicación Flash download tool y elegir ESP8266. Luego configurar de la siguiente forma:

Configurando los ficheros para BOOT MODE Flash size 8Mbit: 512KB+512KB:

  • boot_v1.2.bin              0x00000
  • user1.1024.new.2.bin        0x01000
  • esp_init_data_default.bin   0xfc000 (optional)
  • blank.bin                   0x7e000
  • blank.bin                  0xfe000

Que se encuentran en el directorio bin del fichero de SDK que nos hemos descargado.

Para comprobar la frecuencia de cristal del módulo y la flash, simplemente dando a start sin seleccionar los ficheros y reseteando el módulo obtendremos la información.

Para cargar el firmware necesitamos un adaptador de USB a serial a 3.3V. Para ello tenemos dos opciones: usar un adaptador o usar un Arduino donde tenga cargado cualquier programa que no haga uso del puerto serie, por ejemplo el blink.

Esquema de conexión con adaptador:

Esquema de conexión con Arduino:

Más información sobre el Firmware update (como referencia no están actualizados):

IMPORTANTE: no descargar nada de fuentes no fiables

Práctica: ESP8266 programado por puerto serie

Conexión con programador FTDI:

Conexión con Arduino:

Conectar un terminal serie a 115200-8-N y mandar el comando AT, si nos responde OK es que ya estamos conectados con el módulo.

Manual oficial de comandos: http://www.espressif.com/sites/default/files/4a-esp8266_at_instruction_set_en_v1.5.4_0.pdf

Ejecutar los siguientes comandos y ver lo que devuelve:

  • AT+RST: reinicia el módulo
  • AT+GMR: versión de firmware
  • AT+CWMODE=3: activa modo AP, comprobar redes wifi
  • AT+CWLAP: para ver las redes wifi
  • AT+CWJAP=»SSID»,»password»: Conectarse a una red wifi (AT+CWJAP=»AndroidAP4628″,»esp8266wifi»)
  • AT+CIFSR: comprobar la IP asignada

Actuar como un cliente TCP:

  • AT+CIPMUX=1: Habilitar múltiples conexiones
  • AT+CIPSTART=4,»TCP»,»google.com»,80: Especifica el canal de conexión que desea conectar (0 – 4), el tipo de protocolo (TCP / UDP), la dirección IP (o el dominio si tiene acceso a DNS) y el número de puerto
  • A continuación, debe especificar la cantidad de datos que desea enviar (después de especificar qué canal). Vamos a enviar «GET / HTTP / 1.0 \ r \ n \ r \ n» que es 18 bytes: AT+CIPSEND=4,18
  • Y recibiremos la respuesta del servidor:
 
+IPD,4,559:HTTP/1.0 301 Moved Permanently
Location: http://www.google.com/
Content-Type: text/html; charset=UTF-8
Date: Sat, 12 Nov 2016 16:37:23 GMT
Expires: Mon, 12 Dec 2016 16:37:23 GMT
Cache-Control: public, max-age=2592000
Server: gws
Content-Length: 219
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Connection: close

<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-8">
<TITLE>301 Moved</TITLE></HEAD><BODY>


<H1>301 Moved</H1>


The document has moved
<A HREF="http://www.google.com/">here</A>.
</BODY></HTML>
4,CLOSED

Actuar como servidor:

  • Comprobar que IP tenemos con AT+CIFSR
  • AT+CIPSERVER=1,1336:  para poner a escuchar en un puerto, en este caso el 1336
  • Desde otro dispositivo en la red: telnet 192.168.1.2 1336
  • En el puerto serie veré todo lo que se escriba por telnet
  • Para responder desde el ESP8266 debo usar AT+CIPSEND=0,8 seguido del texto. En este caso es el canal 0 y mando 8 caracteres.

Hacer lo mismo pero usando Arduino, para ello conectarlo según el esquema superior y cargar el programa:

 
#include <SoftwareSerial.h>
SoftwareSerial BT1(3, 2); // RX | TX

void setup()
{ Serial.begin(9600);
  BT1.begin(115200);
}

void loop()
{ 
  if (BT1.available())
  { char c = BT1.read();
    Serial.print(c);
  }
  if (Serial.available())
  { char c = Serial.read();
    BT1.print(c);
  }
}

Configurar el baud rate de ESP8266 a 9600 para que funcione mejor con el comando “AT+UART_DEF=9600,8,1,0,0”, puesto que a 115200 da problemas con el puerto serie software.

Para hacer una reseteo de la configuración de fábrica usar el comando: “AT+RESTORE

Hacer un programa con Arduino que se conecte automáticamente a una red y nos muestra la IP asignada:

  • AT+CWMODE_DEF=1
  • AT+CWJAP=»SSID»,»paswword»
  • AT+CIFSR: comprobar la IP asignada

NOTA: si no se quiere usar el software serial por las limitaciones de velocidad, se puede hacer la misma conexión entre Arduino y el ESP8266 que hemos usado para programar el firmware, de forma que los conectamos por el puerto serie hardware. En este caso los comandos que mando desde el monitor serie van directos al ESP8266 en lugar de pasar por el microcontrolador de Arduino.

Solución Ejercicio 61: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio61-ESP8266

Más información:

ESP8266 y Arduino

El microcontrolador ESP8266 puede usarse con Arduino de dos formas:

  • Usando el firmware propio, de forma que el ESP8266 es una pasarela de puerto serie 3.3V a wifi. De hecho, originalmente el módulo ESP8266 fue creado con este objetivo por la empresa espressif: http://espressif.com/. Para usarlo de esta forma es necesario tener un arduino que programaremos y al que conectamos el módulo ESP8266 por puerto serie para darle capacidad wifi a nuestro Arduino. En este caso el ESP8266 no es programado.
  • Programar ESP8266, en este caso en lugar de usar el firmware que trae por defecto el módulo ESP8266, lo programamos nosotros y para ello usamos el IDE de Arduino y el lenguaje de programación de Arduino junto con alguna librería adicional para manejar el wifi.

Firmware propio

El módulo WIFI ESP8266, que es algo muy parecido a los módulos Bluetooth y que al igual que ellos incluye toda la electrónica necesaria para la comunicación Radio Frecuencia en la banda WiFi, así como la pila TCP/IP y que se comunica con nosotros a través de un puerto serie. De hecho, exactamente igual que los modos HC-06 y HC-05 se gobierna mediante comandos AT (comandos hayes https://es.wikipedia.org/wiki/Conjunto_de_comandos_Hayes) y todo por un precio similar al de los Bluetooth.

El ESP8266 con su firmware de fábrica nos permite conectarnos a Internet desde Arduino conectando ambos módulos mediante el puerto serie y ejecutar comandos AT sobre el ESP8266 y recibiendo la respuesta en Arduino.

Tutorial uso ESP con comandos AT: https://create.arduino.cc/projecthub/user16726/configuring-the-esp8266-using-an-arduino-0ab2e6?ref=similar&ref_id=27809&offset=5

Cheatsheet ESP8266 comandos AT: https://cdn.sparkfun.com/datasheets/Wireless/WiFi/ESP8266ModuleV1.pdf

Programación ESP8266 con IDE Arduino

El ESP8266 dispone internamente de un pequeño procesador, prácticamente es capaz de replicar casi cualquier cosa los Arduinos puedan hacer. Así que los proyectos con sensores más Arduinos que envían los datos a la WIFI mediante un ESP8266, es muy probable que podamos ahorrarnos el Arduino en el proceso, gracias a un firmware basado en C ++. Este permite que la CPU ESP8266 y sus componentes Wi-Fi sean programados como cualquier otro dispositivo Arduino.

  • Puedes desarrollar con el mismo IDE que ya conoces
  • Han hecho un Cross compiler, de forma que prácticamente utilizas los mismos comandos que utilizas con Arduino, con lo que te ahorras aprender nada nuevo
  • Dependiendo del modelo de ESP8266 que tengas, dispones de más o menos pines disponibles con PWM y otras cosas más como I2C y SPI, pero para el modelo ESP8266-01 solo tienes dos pines disponibles GPIO0 y GPIO2
  • Puedes programar el procesador de tu ESP8266 exactamente como si fuera un Arduino con los mismos comandos, y en lo que se refiere a la WIFI, puedes olvidarte de los comandos AT, porque incluye una serie de librerías, que imitan la librería WIFI de Arduino con lo que se pueden reutilizar muchos programas.  

El Arduino Core ESP8266 está disponible a través de GitHub: https://github.com/esp8266/Arduino

Reference de Arduino core para el ESP8266:

Listado de URLs para soporte de tarjetas no oficiales: https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls

Podemos instalar el soporte a terceros en nuestro IDE simplemente añadiendo el texto “http://arduino.esp8266.com/stable/package_esp8266com_index.json” en propiedades:

Y luego desde el gestor de tarjetas dar a instalar al soporte para ESP8266.

Para programar el microcontrolador del ESP8266 necesitamos un adaptador de USB a puerto serie, pero podemos usar el propio ATmega16U2 que viene en Arduino UNO para programarlo.

IMPORTANTE:

  • El ESP8266 va alimentado a 3,3V, ¡no alimentarlo con 5 voltios!
  • El ESP8266 necesita comunicarse vía serie a 3.3V y no tiene entradas tolerantes 5V, por lo que necesita la conversión de nivel para comunicarse con un microcontrolador 5V como la mayoría de los Arduinos

En este caso para poder programar el ESP8266, en el Arduino no puede haber ningún sketch con el puerto serie funcionando ya que interferiría con el puerto serie del ESP8266. Por ejemplo podemos cargar el blink.

IMPORTANTE: Cuando cargas un sketch en el ESP8266 con el IDE Arduino estamos cargando en la flash de ESP8266 un nuevo firmware borrando el que viene por defecto visto anteriormente para manejar el módulo con comando hayes.

Módulo:

Pines:

  • TX (goes to the 3.3V Rx of the UART USB adapter to the PC)
  • CH_PD (enable/power down, must be pulled to 3.3v directly or via resistor)
  • RESET
  • VCC (3.3v power supply)
  • GND (connect to power ground)
  • GPIO 2
  • GPIO 0 (leave open or pull up for normal, pull down to upload new firmware)
  • RX (goes to the 3.3V Tx of the UART USB adapter to the PC)

Vamos a programar el ESP8266 cargando los ejemplos de ESP8266 que vienen en el soporte para el IDE de Arduino, usando la librería ESP8266WiFi.h:

  • ESP8266Wifi/Wifiscan: Scan networks
  • ESP8266Wifi/WifiClient Conectar a wifi
  • ESP8266WebSerber/HelloServer: Servidor web wifi

Paso 1 – Cargar el programa blink en Arduino par que no haya interferencias por el puerto serie.

Paso 2 – Conexión:

Paso 3 – Con el IDE de arduino cargar cualquiera de estos tres programas de ejemplos y comprobar que funcionan:

  • ESP8266Wifi/Wifiscan: Scan networks
  • ESP8266Wifi/WifiClient Conectar a wifi
  • ESP8266WebSerber/HelloServer: Servidor web wifi

También se podría programar el blink de Arduino en la patilla GPIO2, que es la que nos queda libre y hacer parpadear el led:

 
void setup()
   { pinMode(2, OUTPUT); }

void loop()
   { digitalWrite(2, HIGH);  
     delay(1000);  
     digitalWrite(2, LOW);
     delay(1000);   
   }

Para probarlo, conectar independiente el ESP8266 del Arduino.

Probar a enviar mensajes a la plataforma http://www.aprendiendoarduino.com/servicios/mensajes/index.html con el ESP8266 de forma que pasando los datos por el monitor serie, se envían y almacenan en la plataforma.

Solución: https://github.com/jecrespo/aprendiendoarduino-servicios/tree/master/arduino_code/graba_mensaje_ESP

Comparar cómo se haría con el shield de Ethernet: https://github.com/jecrespo/aprendiendoarduino-servicios/tree/master/arduino_code/graba_mensaje_DHCP

Qué es ESP8266

El ESP8266 es un chip Wi-Fi de bajo coste con pila TCP/IP completa y capacidad de MCU (Micro Controller Unit) producida por el fabricante chino Espressif Systems, con sede en Shanghai.

El chip primero llegó a la atención de los fabricantes occidentales en agosto de 2014 con el módulo ESP-01. Este pequeño módulo permite a los microcontroladores conectarse a una red Wi-Fi y realizar conexiones TCP/IP sencillas utilizando comandos de tipo Hayes. Sin embargo, en ese momento casi no había documentación en inglés sobre el chip y los comandos que aceptaba. El precio muy bajo y el hecho de que había muy pocos componentes externos en el módulo que sugiere que podría ser muy barato en el volumen, atrajo a muchos hackers para explorar el módulo, el chip y el software en él, así como para traducir La documentación china.

Web del producto: http://espressif.com/en/products/hardware/esp8266ex/overview

Módulo con memoria flash: http://espressif.com/en/products/hardware/esp-wroom-02/overview

Recursos: http://espressif.com/en/products/hardware/esp8266ex/resources

Datasheet: http://espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf

Wikipedia:

Artículos a leer para nuevos en ESP8266:

El ESP8285 es un ESP8266 con 1 MB de flash incorporado, lo que permite dispositivos de un solo chip capaces de conectarse a Wi-Fi. Muchos encapsulados del ESP8266 viene con 1 MB de flash.

Foro de la comunidad de ESP8266: http://www.esp8266.com/

Más información:

SDK ESP8266

A finales de octubre de 2014, Espressif lanzó un kit de desarrollo de software (SDK) que permite programar el chip, eliminando la necesidad de un microcontrolador por separado.Desde entonces, ha habido muchos lanzamientos oficiales de SDK; Espressif mantiene dos versiones del SDK – una basada en RTOS y la otra basada en callbacks mediante comadnos AT:.

Una alternativa al SDK oficial de Espressif es el open source esp-open-sdk que se basa en la cadena de herramientas (toolchain) GCC. ESP8266 utiliza el microcontrolador Cadence Tensilica LX106 y la cadena de herramientas GCC que es de código abierto y mantenida por Max Filippov. Otra alternativa es «Unofficial Development Kit» de Mikhail Grigorev.

Otros SDK de código abierto para el ESP8266:

ESP8266 core for Arduino: https://github.com/esp8266/Arduino mantenido por al comunidad.

Más información:

Características

El esp8266 es un módulo muy de moda que va alimentado a 3.3V y que hay mucha documentación en internet. EL ESP8266 no tiene ROM y usa una ROM externa SPI y soporta hasta 16MB.

Características:

  • 32-bit RISC CPU: Tensilica Xtensa LX106 running at 80 MHz*
  • 64 KiB of instruction RAM, 96 KiB of data RAM
  • External QSPI flash – 512 KiB to 4 MiB* (up to 16 MiB is supported)
  • IEEE 802.11 b/g/n Wi-Fi
  • 16 GPIO pins
  • SPI, I²C,
  • I²S interfaces with DMA (sharing pins with GPIO)
  • UART on dedicated pins, plus a transmit-only UART can be enabled on GPIO2
  • 1 port 10-bit ADC

* Both the CPU and flash clock speeds can be doubled by overclocking on some devices. CPU can be run at 160 MHz and flash can be sped up from 40 MHz to 80 MHz.

Datos de ESP8266 de datasheet:

  • 802.11 b/g/n
  • Integrated low power 32-bit MCU
  • Integrated 10-bit ADC • Integrated TCP/IP protocol stack
  • Integrated TR switch, balun, LNA, power amplifier and matching network
  • Integrated PLL, regulators, and power management units
  • Supports antenna diversity
  • WiFi 2.4 GHz, support WPA/WPA2
  • Support STA/AP/STA+AP operation modes
  • Support Smart Link Function for both Android and iOS devices
  • SDIO 2.0, (H) SPI, UART, I2C, I2S, IR Remote Control, PWM, GPIO
  • STBC, 1×1 MIMO, 2×1 MIMO
  • A-MPDU & A-MSDU aggregation & 0.4s guard interval
  • Deep sleep power <10uA, Power down leakage current < 5uA
  • Wake up and transmit packets in < 2ms
  • Standby power consumption of < 1.0mW (DTIM3) • +20 dBm output power in 802.11b mode
  • Operating temperature range -40C ~ 125C
  • FCC, CE, TELEC, WiFi Alliance, and SRRC certified

Datos de la MCU Tensilica LX106 que lleva el ESP8266:

Dentro de la gran cantidad de usos para este módulo caben destacar los siguientes:

  • Electrodomésticos conectados.
  • Automatización del hogar.
  • Automatización de la industria.
  • Cámaras IP.
  • Redes de sensores.
  • Wereables.
  • IoT (Internet of Things o Internet de las Cosas)
  • IIoT (Industrial Internet of Things o Internet de las Cosas para el sector Industrial)

Pinout ESP8266:

Pinout placas: http://www.pighixxx.com/test/portfolio-items/esp8266/?portfolioID=360

Diagrama de bloques

Buenísimos tutoriales: http://www.prometec.net/indice-tutoriales-esp8266/

Consumo ESP8266

Tabla de consumo del módulo ESP8266:

Si queremos alimentar el módulo ESP8266 con Arduino debemos ver las limitaciones de Arduino: pin power limitations: http://playground.arduino.cc/Main/ArduinoPinCurrentLimitations, a 5V la limitación es de 1A del regulador de tensión. Como va alimentado a 3.3V la limitación es de 150mA limitado por el regulador de tensión. Regulador http://www.ti.com/lit/ds/symlink/lp2985-33.pdf, por lo tanto alimentar el ESP8266 desde el pin de 3.3V puede dar problemas y es recomendable usar otra fuente de alimentación.

Valores de HIGH y LOW en ESP8266 http://henrysbench.capnfatz.com/henrys-bench/arduino-projects-tips-and-more/esp8266ex-gpio-high-and-low-input-thresholds/

Módulos ESP8266

El ESP8266 se presenta con muchos encapsulados: http://www.esp8266.com/wiki/doku.php?id=esp8266-module-family

Los módulos ESP8266 los podemos encontrar en diferentes encapsulados y placas:

Características de los módulos:

Name Active pins Pitch Form factor LEDs Antenna Shielded? dimensions (mm) Notes
ESP-01 6 0.1″ 2×4 DIL Yes PCB trace No 14.3 × 24.8
ESP-02 6 0.1″ 2×4 castellated No U-FL connector No 14.2 × 14.2
ESP-03 10 2 mm 2×7 castellated No Ceramic No 17.3 × 12.1
ESP-04 10 2 mm 2×4 castellated No None No 14.7 × 12.1
ESP-05 3 0.1″ 1×5 SIL No U-FL connector No 14.2 × 14.2
ESP-06 11 misc 4×3 dice No None Yes 14.2 × 14.7 Not FCC approved
ESP-07 14 2 mm 2×8 pinhole Yes Ceramic + U-FL connector Yes 20.0 × 16.0 Not FCC approved
ESP-08 10 2 mm 2×7 castellated No None Yes 17.0 × 16.0 Not FCC approved
ESP-09 10 misc 4×3 dice No None No 10.0 × 10.0
ESP-10 3 2 mm? 1×5 castellated No None No 14.2 × 10.0
ESP-11 6 0.05″ 1×8 pinhole No Ceramic No 17.3 × 12.1
ESP-12 14 2 mm 2×8 castellated Yes PCB trace Yes 24.0 × 16.0 FCC and CE approved[14]
ESP-12E 20 2 mm 2×8 castellated Yes PCB trace Yes 24.0 × 16.0 4 MB Flash
ESP-12F 20 2 mm 2×8 castellated Yes PCB trace Yes 24.0 × 16.0 FCC and CE approved. Improved antenna performance. 4 MB Flash
ESP-13 16 1.5 mm 2×9 castellated No PCB trace Yes W18.0 x L20.0 Marked as ″FCC″. Shielded module is placed sideways, as compared to the ESP-12 modules.
ESP-14 22 2 mm 2×8 castellated +6 No PCB trace Yes 24.3 x 16.2

Interesante artículo sobre que módulo wifi ESP8266 elegir: http://polaridad.es/esp8266-modulo-wifi-elegir-caracteristicas/

Buena explicación de los módulos: http://visystem.ddns.net:7442/ESP8266-modulos/

ESP WROOM otro encapsulado ya trae una memoria Flash SPI y con certificación FCC y CE:

Datasheet: http://www.espressif.com/sites/default/files/documentation/esp-wroom-s2_datasheet_en.pdf

ESP-01

En nuestro caso vamos a usar el módulo ESP-01:

Esquemático:

Wiki: https://nurdspace.nl/ESP8266

Esquemáticos ESP01: http://henrysbench.capnfatz.com/henrys-bench/arduino-projects-tips-and-more/esp8266-esp-01-pin-outs-and-schematics/

Módulo usado:

Wifi en Arduino

Wifi

El wifi es un mecanismo de conexión de dispositivos electrónicos de forma inalámbrica. Los dispositivos habilitados con wifi como Arduino, pueden conectarse a internet a través de un punto de acceso de red inalámbrica.

Wi-Fi es una marca de la Alianza Wi-Fi, la organización comercial que adopta, prueba y certifica que los equipos cumplen con los estándares 802.11 relacionados a redes inalámbricas de área local.

  • Los estándares IEEE 802.11b, IEEE 802.11g e IEEE 802.11n disfrutan de una aceptación internacional debido a que la banda de 2,4 GHz está disponible casi universalmente, con una velocidad de hasta 11 Mbit/s, 54 Mbit/s y 300 Mbit/s, respectivamente.
  • En la actualidad ya se maneja también el estándar IEEE 802.11ac, conocido como WIFI 5, que opera en la banda de 5 GHz y que disfruta de una operatividad con canales relativamente limpios. La banda de 5 GHz ha sido recientemente habilitada y, además, no existen otras tecnologías (Bluetooth, microondas, ZigBee) que la estén utilizando, por lo tanto existen muy pocas interferencias. Su alcance es algo menor que el de los estándares que trabajan a 2,4 GHz (aproximadamente un 10 %), debido a que la frecuencia es mayor (a mayor frecuencia, menor alcance).

Existen otras tecnologías inalámbricas como Bluetooth que también funcionan a una frecuencia de 2,4 GHz, por lo que puede presentar interferencias con la tecnología wifi. Debido a esto, en la versión 1.2 del estándar Bluetooth actualizó su especificación para que no existieran interferencias con la utilización simultánea de ambas tecnologías, además se necesita tener 40 000 kbit/s.

Existen varias alternativas para garantizar la seguridad de estas redes. Las más comunes son la utilización de protocolos de cifrado de datos para los estándares wifi como el WEP, el WPA, o el WPA2 que se encargan de codificar la información transmitida para proteger su confidencialidad, proporcionados por los propios dispositivos inalámbricos. La mayoría de las formas son las siguientes:

  • WEP, cifra los datos en su red de forma que sólo el destinatario deseado pueda acceder a ellos. Los cifrados de 64 y 128 bits son dos niveles de seguridad WEP. WEP codifica los datos mediante una “clave” de cifrado antes de enviarlo al aire. Este tipo de cifrado no está recomendado debido a las grandes vulnerabilidades que presenta ya que cualquier cracker puede conseguir sacar la clave, incluso aunque esté bien configurado y la clave utilizada sea compleja.
  • WPA: presenta mejoras como generación dinámica de la clave de acceso. Las claves se insertan como dígitos alfanuméricos.
  • WPA2 (estándar 802.11i): que es una mejora relativa a WPA. En principio es el protocolo de seguridad más seguro para Wi-Fi en este momento. Sin embargo requieren hardware y software compatibles, ya que los antiguos no lo son. Utiliza el algoritmo de cifrado AES (Advanced Encryption Standard).
  • IPSEC (túneles IP) en el caso de las VPN y el conjunto de estándares IEEE 802.1X, que permite la autenticación y autorización de usuarios.
  • Filtrado de MAC, de manera que solo se permite acceso a la red a aquellos dispositivos autorizados. Es lo más recomendable si solo se va a usar con los mismos equipos, y si son pocos.
  • Ocultación del punto de acceso: se puede ocultar el punto de acceso (router) de manera que sea invisible a otros usuarios.

Dispositivos de distribución o de red en wifi son:

  • Los puntos de acceso son dispositivos que generan un set de servicio, que podría definirse como una red wifi a la que se pueden conectar otros dispositivos. Los puntos de acceso permiten, en resumen, conectar dispositivos de forma inalámbrica a una red existente. Pueden agregarse más puntos de acceso a una red para generar redes de cobertura más amplia, o conectar antenas más grandes que amplifiquen la señal.
  • Los repetidores inalámbricos son equipos que se utilizan para extender la cobertura de una red inalámbrica, éstos se conectan a una red existente que tiene señal más débil y crean una señal limpia a la que se pueden conectar los equipos dentro de su alcance. Algunos de ellos funcionan también como punto de acceso.
  • Los enrutadores inalámbricos son dispositivos compuestos, especialmente diseñados para redes pequeñas (hogar o pequeña oficina). Estos dispositivos incluyen, un enrutador (encargado de interconectar redes, por ejemplo, nuestra red del hogar con Internet), un punto de acceso (explicado más arriba) y generalmente un conmutador que permite conectar algunos equipos vía cable (Ethernet y USB). Su tarea es tomar la conexión a Internet, y brindar a través de ella acceso a todos los equipos que conectemos, sea por cable o en forma inalámbrica.

Los estándares 802.11b y 802.11g utilizan la banda de 2,4 GHz. En esta banda se definieron 11 canales utilizables por equipos wifi, que pueden configurarse de acuerdo a necesidades particulares. Sin embargo, los 11 canales no son completamente independientes (un canal se superpone y produce interferencias hasta un canal a 4 canales de distancia). El ancho de banda de la señal (22 MHz) es superior a la separación entre canales consecutivos (5 MHz), por eso se hace necesaria una separación de al menos 5 canales con el fin de evitar interferencias entre celdas adyacentes, ya que al utilizar canales con una separación de 5 canales entre ellos (y a la vez cada uno de estos con una separación de 5 MHz de su canal vecino) entonces se logra una separación final de 25 MHz, lo cual es mayor al ancho de banda que utiliza cada canal del estándar 802.11, el cual es de 22 MHz. Tradicionalmente se utilizan los canales 1, 6 y 11, aunque se ha documentado que el uso de los canales 1, 5, 9 y 13 (en dominios europeos) no es perjudicial para el rendimiento de la red.

Esta asignación de canales usualmente se hace sólo en el Punto de acceso, pues los “clientes” automáticamente detectan el canal, salvo en los casos en que se forma una red “Ad-Hoc” o punto a punto cuando no existe punto de acceso.

Canales en 802.11 (wifi) frente a 802.15.4 (zigbee):

Y dentro del espectro electromagnético:

Además, el 802.11n puede utilizar la banda de 5 GHz, que es casi siempre menos concurrida y con menos interferencia que la banda de 2,4 GHz. Pero también funciona en 2,4 GHz, y los clientes 802.11n pueden asociarse con facilidad allí. La Tabla 1 muestra las frecuencias disponibles para los diferentes tipos de clientes inalámbricos.

IEEE 802.11ac (también conocido como WiFi 5G o WiFi Gigabit) es una mejora a la norma IEEE 802.11n, se ha desarrollado entre el año 2011 y el 2013, y finalmente aprobada en enero de 2014.

El estándar consiste en mejorar las tasas de transferencia hasta 433 Mbit/s por flujo de datos, consiguiendo teóricamente tasas de 1.3 Gbit/s empleando 3 antenas. Opera dentro de la banda de 5 GHz, amplía el ancho de banda hasta 160 MHz (40 MHz en las redes 802.11n), utiliza hasta 8 flujos MIMO e incluye modulación de alta densidad (256 QAM).

A un Arduino es posible añadirle conectividad Wifi de forma muy sencilla y ampliar las posibilidades de este microcontrolador con comunicación inalámbrica Wifi.

Hay varias formas de añadir hardware Wifi a Arduino, ya sea con un shield, una breakout board específica, con microcontroladores que tenga wifi integrado o con placas Arduinos que tenga chip wifi en la misma placa. Veamos varios casos de estos tipos, como conectarlos y usarlos, así como las librerías a usar en cada caso.

Buena parte de los visto en Ethernet con Arduino, es válido para wifi, puesto que el protocolo tcp/ip usado es el mismo y solo cambia el medio de comunicación. Trasladar un proyecto de ethernet a wifi es sencillo, solo cambiando la librería para usar el hardware y adaptar los comando en función de los métodos que tengan las librerías.

Wifi 5G

La banda de frecuencia de 5GHz es muy diferente a la de 2.4GHz. Como se puede ver en la siguiente ilustración, ofrece mucho más espacio de frecuencia, que proporciona hasta 25 canales posibles. Como se dará cuenta, sin embargo, hay muchas advertencias a la utilización de 5GHz, y el número de canales configurables en los puntos de acceso pueden ser significativamente menos de 25.

Esta ilustración muestra los canales de 5GHz WiFi disponibles en la actualidad en los diferentes anchos de canal. Cortesía de Security Uncorked

Lo más evidente es el esquema de numeración distinto. El primer canal de conexión WiFi es del 36 y el último es el 165. Sin embargo, no todos los canales están disponibles. En lugar de permitir que usted elija cada canal consecutivo (36, 37, 38, etc.), los dispositivos WiFi están configurados para funcionar solo en canales que no se superponen (36, 40, 44, etc.) si se utilizan los canales 20MHz legados. Todos los canales configurables están separados entre sí por cuatro canales, pero hay lagunas (como el salto del canal 64 al 100) debido a que el espacio de frecuencia dado a WiFi no es totalmente continuo.

WiFi Shield

El WiFi Shield de Arduino conecta Arduino a Internet de forma inalámbrica.

Toda la información sobre este Shield en :

Y los datasheet de los integrados:

Para conectarte al 32UC3: http://arduino.cc/en/Hacking/WiFiShield32USerial

Y la librería para manejar el shield en: http://arduino.cc/en/Reference/WiFi

Actualizar su firmware: http://arduino.cc/en/Hacking/WiFiShieldFirmwareUpgrading

Wifi library:

Un proyecto hecho con Ethernet pasarlo a wifi con el wifi shield, simplemente se trata de cambiar las líneas de código de la parte de red de la librería ethernet a las equivalentes de la librería wifi.

Ejercicio servidor web para encender y apagar led: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio27-Boton_Mejorado_WIFI

WiFi Shield 101

Arduino WiFi Shield 101 es un shield potente para aplicaciones IoT con autenticación criptográfica, desarrollado con ATMEL, que conecta la placa Arduino a Internet de forma inalámbrica. La conexión a una red WiFi es simple, no se necesita ninguna configuración adicional además del SSID y la contraseña. El WiFi Shield 101 viene con una biblioteca fácil de usar que permite conectar la placa Arduino a Internet con pocas instrucciones. Como siempre, cada elemento de la plataforma – hardware, software y documentación está libremente disponible y de código abierto. Se basa en el módulo Atmel SmartConnect-WINC1500, compatible con la norma IEEE 802.11 b/g/n

Características:

  • Operating voltage both 3.3V and 5V (supplied from the host board)
  • Connection via: IEEE 802.11 b/g/n for up to 72 Mbps networks
  • Encryption types: WEP and WPA2 Personal
  • Support TLS 1.1 (SHA256)
  • Connection with Arduino or Genuino on SPI port
  • Onboard CryptoAuthentication by ATMEL

Web del producto https://www.arduino.cc/en/Main/ArduinoWiFiShield101

La de Adafruit https://www.adafruit.com/products/2891

El módulo wifi WINC1500 integrado es un controlador de red capaz de protocolos TCP y UDP. El Wifi Shield 101 también cuenta con un hardware de seguridad de cifrado / descifrado proporcionado por el chip ATCC508A CryptoAuthentication que es un método ultra seguro para proporcionar un acuerdo clave para el cifrado/descifrado, diseñado específicamente para el mercado de IoT.

Datasheet módulo wifi: http://www.atmel.com/devices/atwinc1500.aspx

El pin digital 7 se utiliza como un pin de handshake entre el shield WiFi 101 y Arduino, y no se debe utilizar. El pin digital 5 se utiliza como pin RESET entre el shield WiFi 101 yArduino, y no debe utilizarse.

Tener en cuenta que Uno + WiFi Shield 101 no es compatible con la biblioteca Serial de software. El WiFi Shield 101 usa una biblioteca que es muy compleja y ocupa más del 60% de la memoria disponible, dejando poco espacio para los sketches. Tener en cuenta que para un uso básico es compatible con el Uno, pero para proyectos complejos se recomienda usar el shield WiFi 101 con un Arduino / Genuino Zero, 101 o Mega 2560.

El Wifi Shield 101 se usa con la librería Wifi101 https://www.arduino.cc/en/Reference/WiFi101

Ejemplo sencillo por con el wifi shield 101: https://www.arduino.cc/en/Tutorial/Wifi101SimpleWebServerWiFi

Más información:

Arduino MKR100

Es un nuevo Arduino con un microcontrolador que lleva integrado wifi y mucho más. El Arduino MKR1000 ha sido diseñado para ofrecer una solución práctica y económica buscando conectividad WiFi para gente con mínima experiencia en redes.

Este Arduino está basado en la MCU ATSAMW25 especialmente diseñado para proyectos IoT. Este SoC está compuesto de tres bloques principales:

  • SAMD21 Cortex-M0+ 32bit low power ARM MCU
  • WINC1500 low power 2.4GHz IEEE® 802.11 b/g/n Wi-Fi
  • ECC508 CryptoAuthentication

Microcontrolado ATSAMW25 http://www.atmel.com/devices/ATSAMW25.aspx

Este Arduino también incluye un circuito para cargar baterías Li-Po y utilizar el MKR1000 alimentándose con este tipo de baterías.

IMPORTANTE: Arduino MKR1000 funciona a 3.3V, el máximo voltaje que pueden tolerar los pines es de 3.3V y aplicar voltajes mayores podría dañar la placa. Mientras que una salida de 5V digital es posible, para una comunicación bidireccional de 5V es necesario level shifting.

Datasheet MCU: http://www.atmel.com/devices/ATSAMW25.aspx  

Esquemático: https://www.arduino.cc/en/uploads/Main/MKR1000-schematic.pdf

Pinout:

Getting Started https://www.arduino.cc/en/Guide/MKR1000

Para programar el MKR1000 es necesario añadir al IDE de Arduino soporte para esta placa, ya que el microcontrolador no es un AVR sino un ARM Cortex-M0 de 32 bits. SAMD Core.

El MKR1000 y Arduino Zero tienen unas librerías específicas por su microcontrolador:

Ejemplo NTP en MKR1000: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio39-NTP_MKR1000

ESP8266

El ESP8266 es un chip Wi-Fi de bajo coste con pila TCP/IP completa y capacidad de MCU (Micro Controller Unit) producida por el fabricante chino Espressif Systems, con sede en Shanghai.

El chip primero llegó a la atención de los fabricantes occidentales en agosto de 2014 con el módulo ESP-01. Este pequeño módulo permite a los microcontroladores conectarse a una red Wi-Fi y realizar conexiones TCP/IP sencillas utilizando comandos de tipo Hayes.

En siguientes capítulos se tratará en profundidad.

ESP32 el sucesor de ESP8266

ESP32 es una serie de bajo costo, sistema de bajo consumo de energía en un microcontrolador chip con Wi-Fi integrado y Bluetooth de modo dual. La serie ESP32 utiliza un microprocesador Xtensa LX6 de Tensilica de doble núcleo.

Características:

  • Processors:
    • CPU: Xtensa dual-core (or single-core) 32-bit LX6 microprocessor, operating at 160 or 240 MHz and performing at up to 600 DMIPS
    • Ultra low power (ULP) co-processor
  • Memory: 520 KiB SRAM
  • Wireless connectivity:
    • Wi-Fi: 802.11 b/g/n/e/i
    • Bluetooth: v4.2 BR/EDR and BLE
  • Peripheral interfaces:
    • 12-bit SAR ADC up to 18 channels
    • 2 × 8-bit DACs
    • 10 × touch sensors
    • Temperature sensor
    • 4 × SPI
    • 2 × I²S
    • 2 × I²C
    • 3 × UART
    • SD/SDIO/MMC host
    • Slave (SDIO/SPI)
    • Ethernet MAC interface with dedicated DMA and IEEE 1588 support
    • CAN bus 2.0
    • IR (TX/RX)
    • Motor PWM
    • LED PWM up to 16 channels
    • Hall effect sensor
    • Ultra low power analog pre-amplifier
  • Security:
  • Power Management
    • Internal LDO
    • Individual power domain for RTC
    • 5uA deep sleep current
    • Wake up from GPIO interrupt, timer, ADC measurements, capacitive touch sensor interrupt

El ESP32 trae ventajas muy claras frente al modelo anterior, tales como la inclusión de un segundo procesador (es decir, posee 2 núcleos). Además  se ha añadido la posibilidad de utilizar Bluetooth Low Energy (BLE), el cual es un atractivo para proyectos de tipo IoT. Se ha expandido la cantidad de GPIOs; y ahora se cuentan con más pines de lecturas análogas a digitales (ADC). Se incluyeron dos pines de salida digital a análoga (DAC), lo cual es sumamente atractivo para ciertos proyectos con audio. Se debe resaltar el hecho que hasta ahora, casi ningún modelo de Arduino o microcontrolador similar posee un DAC integrado.

Al poseer un segundo núcleo, este se dedica únicamente para manejar los eventos de WiFi (por defecto), aunque se le pueden asignar tareas específicas. Esto permite una ventaja contra el ESP8266, el cual tiene que detener ciertos eventos para procesar las actividades del WiFi. Otra de las ventajas es la posibilidad de utilizar más sensores de lecturas analógicas sin la necesidad de utilizar multiplexores.

Comparativa de especificaciones:

Pinout

Placas Arduino

Arduino dispone de una amplia variedad de placas y shields para usar dependiendo de nuestras necesidades.

Un shield es una placa compatible que se puede colocar en la parte superior de los arduinos y permite extender las capacidades del arduino. De estas hablaremos en profundidad más adelante.

Primer Arduino:

Arduino Uno

Web: http://arduino.cc/en/Main/ArduinoBoardUno

Es la placa estándar y la más conocida y documentada. Salió a la luz en septiembre de 2010 sustituyendo su predecesor Duemilanove con varias mejoras de hardware que consisten básicamente en el uso de un USB HID propio en lugar de utilizar un conversor FTDI para la conexión USB. Es 100% compatible con los modelos Duemilanove y Diecimila. Viene con un Atmega328p con 32Kbytes de ROM para el programa.

Este es el Arduino que vamos a usar en el curso.

Esquematico: http://arduino.cc/en/uploads/Main/Arduino_Uno_Rev3-schematic.pdf

Microcontrolador: http://www.atmel.com/devices/atmega328p.aspx

Planos del Arduino UNO: https://www.arduino.cc/en/Main/ArduinoBoardUno#documentation

Arduino Mega

Web: http://arduino.cc/en/Main/ArduinoBoardMega2560

Es con mucha diferencia el más potente de las placas con microcontrolador de 8 bits y el que más pines i/o tiene, apto para trabajos ya algo más complejos aunque tengamos que sacrificar un poco el espacio. Cuenta con el microcontrolador Atmega2560 con más memoria para el programa, más RAM y más pines que el resto de los modelos.

Esquematico: http://www.arduino.cc/en/uploads/Main/arduino-mega2560_R3-sch.pdf

Microcontrolador: http://www.atmel.com/devices/atmega2560.aspx

Planos del Arduino MEGA: http://www.arduino.cc/en/Main/ArduinoBoardMega2560

Mega ADK es una placa basada en el Mega2560 pero con un USB host adicional para conectar móviles basados en Android:

Web: https://www.arduino.cc/en/Main/ArduinoBoardMegaADK

Getting Started con ADK: https://www.arduino.cc/en/Guide/ArduinoADK

Arduino Ethernet

Web: http://arduino.cc/en/Main/ArduinoBoardEthernet

Incorpora un puerto ethernet, está basado en el Arduino Uno y nos permite conectarnos a una red o a Internet mediante su puerto de red.

Arduino Due

Web: http://arduino.cc/en/Main/ArduinoBoardDue

Arduino con la mayor capacidad de procesamiento, basado en un microcontrolador de 32 bit y arquitectura ARM: Atmel SAM3X8E ARM Cortex-M3 CPU. Este arduino está alimentado a 3.3V y dado que gran parte de los shields, sensores, actuadores para Arduino y compatible son a 5V lo limita, pero cada vez se ven más elementos donde se puede elegir el voltaje entre 3.3 y 5V.

Importante: 12-bit ADC

Microcontrolador: http://www.atmel.com/devices/sam3x8e.aspx

Arduino Leonardo

Web: http://arduino.cc/en/Main/ArduinoBoardLeonardo

La diferencia de este arduino con el resto es que trae un único MCU ATmega32u4 que tiene integrado la comunicación USB, lo que elimina la necesidad de un segundo procesador. Esto tiene otras implicaciones en el compartimento del arduino al conectarlo al ordenador, lo que no lo hace apto para iniciarse con él.

Microcontrolador: http://www.atmel.com/devices/atmega32u4.aspx

Los Arduinos basados en el microcontrolador 32u4 permiten aparecer al Arduino conectado al ordenador como un ratón o teclado nativo, simulando un dispositivo de este tipo.

Getting Started: https://www.arduino.cc/en/Guide/ArduinoLeonardoMicro

Librería MouseKeyboard: https://www.arduino.cc/en/Reference/MouseKeyboard

Arduino Micro

Web: http://arduino.cc/en/Main/ArduinoBoardMicro

También basado en el ATmega32u4 pero mucho más compacto.

Ejemplo de placa para uso de Arduino pequeños con bornas: https://spiercetech.com/shop/home/17-arduino-nano-30-controller-terminal-breakout-board.html

Arduino Mini

Web: http://arduino.cc/en/Main/ArduinoBoardMini

Versión miniaturizada de la placa Arduino UNO basado en el ATMega328. Mide tan sólo 30x18mm y permite ahorrar espacio en los proyectos que lo requieran. Las funcionalidades son las misma que Arduino UNO. Necesita un programador para conectarlo al ordenador: http://arduino.cc/en/Main/USBSerial

Arduino Lilypad

Web: http://arduino.cc/en/Main/ArduinoBoardLilyPad

Diseñado para dispositivos “wearables” y e-textiles. Para coser con hilo conductor e instalarlo sobre prendas.

Más información para fabricar wearable con arduino en: http://lilypadarduino.org/

Arduino Yun

El Arduino Yun es un Arduino que es diferente a lo que son el resto de Arduino porque además de llevar un microcontrolador, incorpora un Microprocesador MIPS con un Sistema Operativo Linux embebido. La ventaja que aporta Arduino Yun y sus derivados es que el microcontrolador y el microprocesador están conectado mediante un puerto serie y además Arduino nos ofrece una serie de herramientas/librerías que facilita la interconexión entre ellos.

Arduino Yun (MCU + MP con Linux): http://arduino.cc/en/Main/ArduinoBoardYun

Guía con Open WRT: https://www.arduino.cc/en/Guide/ArduinoYun

Guía con LininoOS: https://www.arduino.cc/en/Guide/ArduinoYunLin

Arduinos para Wearables

Nuevos Arduinos incorporados recientemente

Arduino 101

Web: https://www.arduino.cc/en/Main/ArduinoBoard101

Es el sucesor del Arduino UNO con procesador Intel Curie Quark de 32 bit diseñado para ofrecer el mínimo consumo de energía, 384 KB de memoria flash, 80 KB de SRAM, un sensor DSP integrado, bluetooth de baja energía, acelerómetro y giroscopio de 6 ejes.

Video de 101: https://blog.arduino.cc/2016/01/13/unboxing-and-setup-of-arduino-101/

Código Firmware: https://github.com/01org/corelibs-arduino101 que no hace falta instalarlo porque ya viene integrado en el IDE de arduino.cc y desde el gestor de librerías se instala en: C:\Users\<user>\AppData\Local\Arduino15\packages\Intel\hardware\arc32\1.0.5

Review completa del 101: http://www.kitguru.net/components/cpu/james-morris/intel-genuino-101-review/

Genuino MKR1000

Web: https://www.arduino.cc/en/Main/ArduinoMKR1000

Versión para IoT con procesador Atmel ARM Cortex M0+ de 32bits ATSAMW25 que es el mismo procesador que Genuino Zero pero con wifi integrado, chip de cifrado y antena integrada.

Arduino Leonardo ETH

Web: https://www.arduino.cc/en/Main/ArduinoBoardLeonardoEth

Es un Arduino Leonardo con ethernet proporcionado por el controlador W5500. Se trata de la versión actualizada del Arduino Ethernet.

Documentación: http://labs.arduino.org/Arduino%20leonardo%20eth

Getting Started: http://labs.arduino.org/Getting+Started+with+Arduino+Leonardo+Eth

Arduino MKRFOX1200

Es la última incorporación de Arduino anunciado en abril de 2017. En una placa de desarrollo pensada para el IoT con conectividad Sigfox. Comparte muchas características con otras placas de la familia MKR como em microcontrolador SAM D21 32-bit Cortex-M0+.

Incluye un módulo ATA8520 con conectividad sigfox de amplia cobertura y bajo consumo capaz de funcionar durante 6 meses con dos pilas AA. También incluye una suscripción por dos años a la red Sigfox: http://www.sigfox.com/en

Comprar: https://store.arduino.cc/homepage/arduino-mkrfox1200

Web: https://blog.arduino.cc/2017/04/18/introducing-the-arduino-mkrfox1200/

Otros Arduinos oficiales

Existen aun mas Arduino oficiales:

Otros Arduinos de arduino.org

Se trata de placas diseñadas por arduino.org pero que no han sido ofertados oficialmente por arduino.cc. Estas placas tienen soporte del IDE oficial de Arduino.

Retirados

Hay modelos retirados, pero la documentación sigue disponible y es posible aun comprarlas por terceros que las fabrican o fabricarlas uno mismo.

Placas Compatibles Arduino

La marca Arduino está protegida y solo puede usarse por Arduino, pero debido a que se trata de hardware libre, existen multitud de placas disponibles que bien son clones, placas derivadas (forks) u otras placas totalmente independientes pero que la comunidad ha desarrollado el código para poder programarlas con el lenguaje de programación de Arduino.

Cuando hablamos de placas compatibles con Arduino, son aquellas que se pueden programar con el IDE de Arduino.

Listado no oficial de placas de terceros soportadas por el IDE de Arduino: https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls

Funduino

Web: https://www.funduinoshop.com/epages/78096195.sf/en_GB/?ViewObjectPath=%2FShops%2F78096195

Chipkit

Web: http://chipkit.net/

ESP8266

Web: https://espressif.com/en/products/hardware/esp8266ex/overview

Moteino

Web: https://lowpowerlab.com/guide/moteino/

Resumen

Arduino.cc products: https://www.arduino.cc/en/Main/Products

Arduino.org products: http://www.arduino.org/products/boards

Como distinguir un arduino oficial de una copia: http://arduino.cc/en/Products/Counterfeit

Guía para comparar Arduino:  https://learn.sparkfun.com/tutorials/arduino-comparison-guide