Archivo de la categoría: Curso Iniciación 2017

Ejemplos Ethernet Arduino

IMPORTANTE: Para los ejercicio con conexión Ethernet es imprescindible poner en la MAC del Arduino en los dos últimos dígitos el número del kit. En todos los sketchs hay que sustituir YY por el número de kit.

Para las prácticas la IP de los Arduinos se asignará dinámicamente por DHCP, en este caso ya nos asigna también el servidor DNS y por lo tanto podemos usar nombres de páginas web

Conexión a una Web con Arduino

Crear un cliente ethernet que se conecte varias webs y escriba por consola los datos recogidos. También guarde los datos recibidos en un string. Probar a conectar a varias páginas web y usa el servicio DNS poniendo la url en lugar de la IP.

Webs:

Tutorial: webclient con ejemplo de métodos get y post: http://playground.arduino.cc/Code/WebClient

Solución: https://github.com/jecrespo/aprendiendoarduino-Curso_Arduino_2017/tree/master/Ejercicio35-EthernetClient_DHCP

Web Server

Crear un servidor web sencillo que saque por el puerto serie y también devuelva al navegador que le ha llamado la petición http recibida.

Luego añadir el valor leído en la entrada analógica A0.

Avanzado: Modificar el ejercicio anterior y leer solo la línea de la petición, esto es útil cuando hay que analizar el http request y que Arduino devuelva una cosa u otra en función de la petición que llegue. Quitar comentarios en el bucle que lee los caracteres recibidos y ver lo que ocurre. Fijarse que el tiempo de bucle en este caso es más rápido y esto tiene ventajas.

Tutorial webserver: http://playground.arduino.cc/Code/WebServerST

Solución: https://github.com/jecrespo/aprendiendoarduino-Curso_Arduino_2017/tree/master/Ejercicio39-EthernetServer_DHCP

Anuncios

Hardware Ethernet en Arduino

El Arduino ethernet shield nos da la capacidad de conectar un Arduino a una red ethernet. Es la parte física que implementa la pila de protocolos TCP/IP.

Está basada en el chip ethernet Wiznet W5100. El Wiznet W5100 provee de una pila de red IP capaz de soportar TCP y UDP. Soporta hasta cuatro conexiones de sockets simultáneas. Usa la librería Ethernet para leer y escribir los flujos de datos que pasan por el puerto ethernet. Me permitirá escribir sketches que se conecten a internet usando esta shield.

Datasheet de W5100: https://www.sparkfun.com/datasheets/DevTools/Arduino/W5100_Datasheet_v1_1_6.pdf

Librería ethernet: http://arduino.cc/en/Reference/Ethernet

El shield provee un conector ethernet estándar RJ45. La ethernet shield dispone de unos conectores que permiten conectar a su vez otras placas encima y apilarlas sobre la placa Arduino.

Arduino usa los pines digitales 10, 11, 12, y 13 (SPI) para comunicarse con el W5100 en la ethernet shield. Estos pines no pueden ser usados para e/s genéricas.

El botón de reset en la shield resetea ambos, el W5100 y la placa Arduino.

La shield contiene varios LEDs para información:

  • ON: indica que la placa y la shield están alimentadas
  • LINK: indica la presencia de un enlace de red y parpadea cuando la shield envía o recibe datos
  • 100M: indica la presencia de una conexión de red de 100 Mb/s (de forma opuesta a una de 10Mb/s)
  • RX: parpadea cuando el shield recibe datos
  • TX: parpadea cuando el shield envía datos

El jumper soldado marcado como “INT” puede ser conectado para permitir a la placa Arduino recibir notificaciones de eventos por interrupción desde el W5100, pero esto no está soportado por la librería Ethernet. El jumper conecta el pin INT del W5100 al pin digital 2 de Arduino.

El slot SD en la shield usa la librería http://arduino.cc/en/Reference/SD para manejarlo. El propio chip W5100 incluye el manejo de tarjetas SD.

Para usar la Ethernet Shield solo hay que montarla sobre la placa Arduino. Para cargar los sketches a la placa con el shield, conectarla al ordenador mediante el cable USB como se hace normalmente. Luego conectar el puerto Ethernet a un ordenador, a un switch o a un router utilizando un cable ethernet standard (CAT5 o CAT6 con conectores RJ45). La conexión al ordenador puede requerir el uso de un cable cruzado (aunque muchos ordenadores actuales, pueden hacer el cruce de forma interna).

Un tutorial sencillo para comenzar con el shield ethernet en: http://www.artinteractivo.com/arduino-ethernet

Para cualquier duda sobre el ethernet Shield consultar: http://arduino.cc/en/Main/ArduinoEthernetShield

Puntos a recordar del Ethernet Shield:

  • Opera a 5V suministrados desde la placa de Arduino
  • El controlador ethernet es el W5100 con 16K de buffer interno. No consume memoria.
  • El shield se comunica con el microcontrolador por el bus SPI, por lo tanto para usarlo siempre debemos incluir la libreria SPI.h: http://arduino.cc/en/Reference/SPI
  • Soporta hasta 4 conexiones simultáneas
  • Usar la librería Ethernet para manejar el shield: http://arduino.cc/en/Reference/Ethernet
  • El shield dispone de un lector de tarjetas micro-SD que puede ser usado para guardar ficheros y servirlos sobre la red. Para ello es necesaria la librería SD: http://arduino.cc/en/Reference/SD
  • Al trabajar con la SD, el pin 4 es usado como SS.

Arduino UNO se comunica con W5100 y la tarjeta SD usando el bus SPI a través del conector ICSP. Por este motivo los pines 10, 11, 12 y 13 en el UNO y los 50, 51, 52 y 53 en el Mega no podrán usarse. En ambas placas los pines 10 y 4 se usan para seleccionar el W5100 y la tarjeta SD. El Ethernet y el SD no pueden trabajar simultáneamente y debemos tener cuidado al usar ambos de forma conjunta.

Para conectar el shield, se deben seguir estas instrucciones: http://arduino.cc/en/Guide/ArduinoEthernetShield

El esquemático lo podéis encontrar en: http://arduino.cc/en/uploads/Main/arduino-ethernet-shield-06-schematic.pdf

Arduino Ethernet Shield 2

Arduino Ethernet Shield es una placa que aparece en la web de arduino.cc como retirado, pero sigue estando disponible como clones o versiones derivadas.

Existe una nueva versión del Ethernet Shield llamadal Arduino Etherner Shield 2 con el nuevo Wiznet 5500: https://www.arduino.cc/en/Main/ArduinoEthernetShield

Este Shield usa la librería Ethernet 2 cuya sintaxis es igual que la librería Ethernet: https://www.arduino.cc/en/Reference/Ethernet

Data sheet de W5500: https://www.sos.sk/productdata/15/26/12/152612/W5500_datasheet_v1.0.2_1.pdf

Mejoras de W5500: https://feilipu.me/2014/11/16/wiznet-w5500-ioshield-a/

Otros Arduinos con Ethernet

Existe un Arduino Ethernet que es casi igual a un arduino UNO + Ethernet Shield: https://www.arduino.cc/en/Main/arduinoBoardEthernet

También existe el Arduino Leonardo ETH que es casi lo mismo que un Arduino Leonardo + un Ethernet Shield 2: https://www.arduino.cc/en/Main/ArduinoBoardLeonardoEth

Práctica: Uso Ethernet Shield

IP Dinámica con Arduino. DHCP

Configurar Arduino con el ethernet shield de forma que coja la IP dinámicamente por DHCP y lo muestre por pantalla.

Solución: https://github.com/jecrespo/aprendiendoarduino-Curso_Arduino_2017/tree/master/Ejercicio32-DHCP

IP Fija con Arduino

Configurar Arduino con el ethernet shield de forma que le asignamos una IP fija con la siguiente configuración:

  • IP: 192.168.6.1YY. Siendo YY el número = 30 + número del kit. Por ejemplo para el kit 4 la IP es la 192.168.6.134 y para el kit 16 la IP es es 192.168.6.146.
  • Subnent: 255.255.255.0
  • Gateway: 192.168.6.1
  • DNS: 8.8.8.8

Solución: https://github.com/jecrespo/aprendiendoarduino-Curso_Arduino_2017/tree/master/Ejercicio33-Configurar_IP

Entradas y Salidas Analógicas Arduino. PWM

Una señal eléctrica analógica es aquella en la que los valores de la tensión o voltaje varían constantemente y pueden tomar cualquier valor. En el caso de la corriente alterna, la señal analógica incrementa su valor con signo eléctrico positivo (+) durante medio ciclo y disminuye a continuación con signo eléctrico negativo (–) en el medio ciclo siguiente.

Un sistema de control (como un microcontrolador) no tiene capacidad alguna para trabajar con señales analógicas, de modo que necesita convertir las señales analógicas en señales digitales para poder trabajar con ellas.

La señal digital obtenida de una analógica tiene dos propiedades fundamentales:

En el caso de un arduino Uno, el valor de 0 voltios analógico es expresado en digital como B0000000000 (0) y el valor de 5V analógico es expresado en digital como B1111111111 (1023). Por lo tanto todo valor analógico intermedio es expresado con un valor entre 0 y 1023, es decir, sumo 1 en binario cada 4,883 mV.

Arduino Uno tiene una resolución de 10 bits, es decir, unos valores entre 0 y 1023.

Arduino Due tiene una resolución de 12 bits, es decir, unos valores entre 0 y 4095.

Diferencia entre señales analógicas y digitales:

Entradas Analógicas en Arduino

Los microcontroladores de Arduino contienen en la placa un conversor analógico a digital de 6 canales. El conversor tiene una resolución de 10 bits, devolviendo enteros entre 0 y 1023. Los pines analógicos de Arduino también tienen todas las funcionalidades de los pines digitales. Por lo tanto, si necesitamos más pines digitales podemos usar los pines analógicos. La nomenclatura para los pines analógicos es A0, A1, etc…

En arduino los pines analógicos se definen y tienen las propiedades siguientes: http://arduino.cc/en/Tutorial/AnalogInputPins

En arduino para tratar las entradas y salidas digitales usamos las siguientes funciones:

En Visualino disponemos de las funciones para leer de entradas analógicas y escribir en salidas analógicas en la agrupación de bloques “Pin Functions”.

Otras funciones interesantes con entradas/salidas analógicas:

En Visualino estás disponibles las funciones map y random en la agrupación “Math”

Salidas Analógicas. PWM

Como hemos dicho Arduino Uno tiene entradas analógicas que gracias a los conversores analógico digital puede entender ese valor el microcontrolador, pero no tiene salidas analógicas puras y para solucionar esto, usa la técnica de PWM.

Algunos pines digitales pueden usarse como salidas analógicas PWM:

Las Salidas PWM (Pulse Width Modulation) permiten generar salidas analógicas desde pines digitales. Arduino Uno no posee salidas analógicas puras, sin embargo el Arduino Due sí tiene salidas analógicas puras mediante dos DAC. El arduino due, posee dos salidas analógicas puras mediante dos conversores digital a analógico. Estos pines pueden usarse para crear salidas de audio usando la librería correspondiente.

La función para hacer una salida PWM en un pin es:

En Visualino disponemos de la función analogWrite() para escribir entradas analógicas con PWM en la agrupación de bloques “Pin Functions”.

La modulación por ancho de pulsos (también conocida como PWM, siglas en inglés de pulse-width modulation) de una señal o fuente de energía es una técnica en la que se modifica el ciclo de trabajo de una señal periódica (una senoidal o una cuadrada, por ejemplo), ya sea para transmitir información a través de un canal de comunicaciones o para controlar la cantidad de energía que se envía a una carga.

El ciclo de trabajo de una señal periódica es el ancho relativo de su parte positiva en relación con el período.

duty cycle = (tiempo que la salida está a uno o HIGH)/ (periodo de la función)

Diferentes valores de una señal PWM:

En este ejemplo se ve cómo simular con PWM una onda sinusoidal analógica.

En Arduino la frecuencia de PWM es de 500Hz. Pero es un valor que puede modificarse en caso que lo necesitemos.

En la actualidad existen muchos circuitos integrados en los que se implementa la modulación PWM, por ejemplo para lograr circuitos funcionales que puedan controlar fuentes conmutadas, controles de motores, controles de elementos termoeléctricos, choppers para sensores en ambientes ruidosos y algunas otras aplicaciones.

Definición de PWM en la web de Arduino: http://arduino.cc/en/Tutorial/PWM

Para ampliar un poco más de información sobre PWM ver: http://rufianenlared.com/que-es-pwm/

Función Tone()

No confundir PWM con la función tone() que es utilizada para generar una onda cuadrada de ciclo de trabajo 50% y frecuencia variable, con el fin de emitir sonidos audibles, modificando la frecuencia.

Más información de tone() en: https://code.google.com/p/rogue-code/wiki/ToneLibraryDocumentation

Entradas y Salidas Digitales Arduino

Una señal digital es un tipo de señal generada por algún tipo de fenómeno electromagnético en que cada signo que codifica el contenido de la misma puede ser analizado en término de algunas magnitudes que representan valores discretos, en lugar de valores dentro de un cierto rango. Por ejemplo, el interruptor de la luz sólo puede tomar dos valores o estados: abierto o cerrado, o la misma lámpara: encendida o apagada.

Más información:

Los sistemas digitales, como por ejemplo un microcontrolador, usan la lógica de dos estados representados por dos niveles de tensión eléctrica, uno alto, H y otro bajo, L (de High y Low, respectivamente, en inglés). Por abstracción, dichos estados se sustituyen por ceros y unos, lo que facilita la aplicación de la lógica y la aritmética binaria. Si el nivel alto se representa por 1 y el bajo por 0, se habla de lógica positiva y en caso contrario de lógica negativa.

Cabe mencionar que, además de los niveles, en una señal digital están las transiciones de alto a bajo y de bajo a alto, denominadas flanco de bajada y de subida, respectivamente. En una señal digital, se denomina flanco a la transición del nivel bajo al alto (flanco de subida) o del nivel alto al bajo (flanco de bajada).

Características de las Señales Digitales

Flanco vs Pulso

Periodo, ancho de pulso, flancos

Tipos de señales digitales

  • Discreta: puede tomar un conjunto de valores
  • Binaria: Encendido (1) – Apagado (0)

Tecnologías de construcción

Arduino trabaja con tecnología TTL (transistor-transistor logic): http://es.wikipedia.org/wiki/Tecnolog%C3%ADa_TTL

Características

  • Su tensión de alimentación característica se halla comprendida entre los 4,75V y los 5,25V. Normalmente TTL trabaja con 5V.
  • Los niveles lógicos vienen definidos por el rango de tensión comprendida entre 0,0V y 0,8V para el estado L (bajo) y los 2,4V y Vcc para el estado H (alto).
  • La velocidad de transmisión entre los estados lógicos es su mejor base, si bien esta característica le hace aumentar su consumo siendo su mayor enemigo. Motivo por el cual han aparecido diferentes versiones de TTL como FAST, LS, S, etc y últimamente los CMOS: HC, HCT y HCTLS. En algunos casos puede alcanzar poco más de los 250 MHz.
  • Las señales de salida TTL se degradan rápidamente si no se transmiten a través de circuitos adicionales de transmisión (no pueden viajar más de 2 m por cable sin graves pérdidas).

Tecnología CMOS: https://es.wikipedia.org/wiki/Semiconductor_complementario_de_%C3%B3xido_met%C3%A1lico

Comparación TTL y CMOS: http://digital.ni.com/public.nsf/allkb/2D038D3AE1C35011862565A8005C5C63

Los nuevos arduinos basados en procesadores ARM de 32 bits, usan tecnología TTL a 3.3V

Entradas y Salidas Digitales en Arduino

En arduino los pines digitales se describen y tienen la propiedades siguientes:  http://arduino.cc/en/Tutorial/DigitalPins

En arduino para tratar las entradas y salidas digitales usamos las siguientes funciones:

En Visualino disponemos de las funciones para leer de entradas digitales y escribir en salidas digitales en la agrupación de bloques “Pin Functions”. Visualino pone automáticamente el pinMode dependiendo si he elegido leer o escribir sobre el pin.

En la imagen siguiente se muestra el estado por defecto de una I/O digital en un microcontrolador de Arduino. Se ha simplificado con interruptores la compleja electrónica que hay dentro. Por defecto los digital I/O pins están configurados como inputs en un estado de alta impedancia (equivalente a una resistencia de 100 Mohms en frente del pin), es decir, SW3 a ON y no hace falta llamar a la función pinMode() aunque es recomendable para aclarar el código.

  • PinMode(x, INPUT) –> SW3 = ON (resto a OFF). Los valores leídos serán aleatorios si el pin de Arduino está al aire. El pin está en un estado de alta impedancia (resistencia de 100 Mohms).
  • PinMode(x,INPUT_PULLUP) –> SW3 = ON & SW4 = ON (resto a OFF). Los valores leídos sin nada conectado al pin es HIGH. La Resistencia R1 tiene un valor dependiendo del microcontrolador, pero tiene un valor entre 20kOhm y 150kOhm.
  • PinMode(x, OUTPUT) & digitalWrite(x,HIGH) –> SW2 = ON & SW1 = +5V (resto a OFF). Estado de baja impedancia, no hay resistencia interna y es necesario poner una resistencia adecuada a la salida el pin para no superar los 40mA (source) máximos admitidos
  • PinMode(x, OUTPUT) & digitalWrite(x,LOW) –> SW2 = ON & SW1 = GND (resto a OFF). Estado de baja impedancia, no hay resistencia interna y es necesario poner una adecuada para no superar los 40mA (sink) máximos admitidos

Más información sobre pullup resistors: https://learn.sparkfun.com/tutorials/pull-up-resistors

En el caso que el pin esté configurado como OUTPUT, hay diferencia entre sink (recogida de corriente) y source (fuente de corriente) de un pin digital configurado como salida.

En el primer caso para encender el LED debe ponerse digitalWrite() a HIGH y en el segundo a LOW

 

En el caso que el pin de entrada esté configurado como INPUT. Cuando el botón no está pulsado, en el primer caso leo digitalRead() un valor HIGH y en el segundo LOW y cuando pulso el botón, en el primer caso leo digitalRead() un valor LOW y en el segundo HIGH. Como véis, dependiendo de la configuración de lo conectado cambia lo leído. Estas configuraciones se denominan resistencias de pull up y resistencia de pull down respectivamente.

En el caso que el pin de entrada configurado como INPUT_PULLUP. Si el botón no está pulsado leo HIGH (no se producen lecturas aleatorias con el pin al aire) y cuando pulso el botón leo LOW. Esta es la mejor forma de leer entradas digitales sin necesidad de poner elementos externos a Arduino.

Más información sobre como usar las internal pullups: https://www.baldengineer.com/arduino-pull-ups.html

NOTA: muy buen tutorial para entender las resistencias de pullup y pulldown http://www.instructables.com/id/Understanding-the-Pull-up-Resistor-With-Arduino/

Placas Arduino

Arduino dispone de una amplia variedad de placas y shields para usar dependiendo de nuestras necesidades.

Un shield es una placa compatible que se puede colocar en la parte superior de los arduinos y permite extender las capacidades del arduino. De estas hablaremos en profundidad más adelante.

Primer Arduino:

Arduino Uno

Web: https://store.arduino.cc/arduino-uno-rev3

Es la placa estándar y la más conocida y documentada. Salió a la luz en septiembre de 2010 sustituyendo su predecesor Duemilanove con varias mejoras de hardware que consisten básicamente en el uso de un USB HID propio en lugar de utilizar un conversor FTDI para la conexión USB. Es 100% compatible con los modelos Duemilanove y Diecimila. Viene con un Atmega328p con 32Kbytes de ROM para el programa.

Este es el Arduino que vamos a usar en el curso.

Esquematico: http://arduino.cc/en/uploads/Main/Arduino_Uno_Rev3-schematic.pdf

Microcontrolador: http://www.atmel.com/devices/atmega328p.aspx

Planos del Arduino UNO: https://www.arduino.cc/en/Main/ArduinoBoardUno#documentation

Arduino Mega

Web: https://store.arduino.cc/arduino-mega-2560-rev3

Es con mucha diferencia el más potente de las placas con microcontrolador de 8 bits y el que más pines i/o tiene, apto para trabajos ya algo más complejos aunque tengamos que sacrificar un poco el espacio. Cuenta con el microcontrolador Atmega2560 con más memoria para el programa, más RAM y más pines que el resto de los modelos.

Esquematico: http://www.arduino.cc/en/uploads/Main/arduino-mega2560_R3-sch.pdf

Microcontrolador: http://www.atmel.com/devices/atmega2560.aspx

Planos del Arduino MEGA: http://www.arduino.cc/en/Main/ArduinoBoardMega2560

Mega ADK es una placa basada en el Mega2560 pero con un USB host adicional para conectar móviles basados en Android:

Web: https://www.arduino.cc/en/Main/ArduinoBoardMegaADK

Getting Started con ADK: https://www.arduino.cc/en/Guide/ArduinoADK

Arduino Ethernet

Web: https://store.arduino.cc/arduino-ethernet-rev3-without-poe

Incorpora un puerto ethernet, está basado en el Arduino Uno y nos permite conectarnos a una red o a Internet mediante su puerto de red.

Arduino Due

Web: https://store.arduino.cc/arduino-due

Arduino con la mayor capacidad de procesamiento, basado en un microcontrolador de 32 bit y arquitectura ARM: Atmel SAM3X8E ARM Cortex-M3 CPU. Este arduino está alimentado a 3.3V y dado que gran parte de los shields, sensores, actuadores para Arduino y compatible son a 5V lo limita, pero cada vez se ven más elementos donde se puede elegir el voltaje entre 3.3 y 5V.

Importante: 12-bit ADC

Microcontrolador: http://www.atmel.com/devices/sam3x8e.aspx

Arduino Leonardo

Web: https://store.arduino.cc/arduino-leonardo-with-headers

La diferencia de este arduino con el resto es que trae un único MCU ATmega32u4 que tiene integrado la comunicación USB, lo que elimina la necesidad de un segundo procesador. Esto tiene otras implicaciones en el compartimento del arduino al conectarlo al ordenador, lo que no lo hace apto para iniciarse con él.

Microcontrolador: http://www.atmel.com/devices/atmega32u4.aspx

Los Arduinos basados en el microcontrolador 32u4 permiten aparecer al Arduino conectado al ordenador como un ratón o teclado nativo, simulando un dispositivo de este tipo.

Getting Started: https://www.arduino.cc/en/Guide/ArduinoLeonardoMicro

Librería MouseKeyboard: https://www.arduino.cc/en/Reference/MouseKeyboard

Arduino Leonardo ETH

Web: https://store.arduino.cc/arduino-leonardo-eth  

Es un Arduino Leonardo con ethernet proporcionado por el controlador W5500. Se trata de la versión actualizada del Arduino Ethernet.

Documentación: http://labs.arduino.org/Arduino%20leonardo%20eth

Getting Started: http://labs.arduino.org/Getting+Started+with+Arduino+Leonardo+Eth

Arduino Micro

Web: https://store.arduino.cc/arduino-micro

También basado en el ATmega32u4 pero mucho más compacto.

Ejemplo de placa para uso de Arduino pequeños con bornas: https://spiercetech.com/shop/home/17-arduino-nano-30-controller-terminal-breakout-board.html

Arduino Mini

Web: https://store.arduino.cc/arduino-mini-05

Versión miniaturizada de la placa Arduino UNO basado en el ATMega328. Mide tan sólo 30x18mm y permite ahorrar espacio en los proyectos que lo requieran. Las funcionalidades son las misma que Arduino UNO. Necesita un programador para conectarlo al ordenador: http://arduino.cc/en/Main/USBSerial

Arduino Yun

El Arduino Yun es un Arduino que es diferente a lo que son el resto de Arduino porque además de llevar un microcontrolador, incorpora un Microprocesador MIPS con un Sistema Operativo Linux embebido. La ventaja que aporta Arduino Yun y sus derivados es que el microcontrolador y el microprocesador están conectado mediante un puerto serie y además Arduino nos ofrece una serie de herramientas/librerías que facilita la interconexión entre ellos.

Arduino Yun (MCU + MP con Linux): https://store.arduino.cc/arduino-yun

Guía con Open WRT: https://www.arduino.cc/en/Guide/ArduinoYun

Guía con LininoOS: https://www.arduino.cc/en/Guide/ArduinoYunLin

Familia MKR

La familia de Arduino MKR son uan serie de placas con un factor de forma diferente al de Arduino mucho más pequeño y basados todos en el microcontrolador de 32 bits de Atmel SAMD21. Estas placas están pensadas principalmente para IoT.

Arduino MKRZero

Web: https://store.arduino.cc/arduino-mkrzero

Primero modelo de la familia MKR y heredero del Arduino Zero.

Arduino MKR1000 WIFI

Web: https://store.arduino.cc/arduino-mkr1000

Versión para IoT con procesador Atmel ARM Cortex M0+ de 32bits ATSAMW25 que es el mismo procesador que Genuino Zero pero con wifi integrado, chip de cifrado y antena integrada.

El ATSAMW25 está compuesto por tres principales bloques:

  • SAMD21 Cortex-M0+ 32bit low power ARM MCU
  • WINC1500 low power 2.4GHz IEEE® 802.11 b/g/n Wi-Fi (mismo que el wifi 101 shield)
  • ECC508 CryptoAuthentication

Arduino MKR FOX 1200

Web: https://store.arduino.cc/arduino-mkrfox1200

Arduino anunciado en abril de 2017. En una placa de desarrollo pensada para el IoT con conectividad Sigfox. Comparte muchas características con otras placas de la familia MKR como em microcontrolador SAM D21 32-bit Cortex-M0+.

Incluye un módulo ATA8520 con conectividad sigfox de amplia cobertura y bajo consumo capaz de funcionar durante 6 meses con dos pilas AA. También incluye una suscripción por dos años a la red Sigfox: http://www.sigfox.com/en

Web: https://blog.arduino.cc/2017/04/18/introducing-the-arduino-mkrfox1200/

Arduino MKR WAN 1300

Web: https://store.arduino.cc/mkr-wan-1300

Presentado el 25 de septiembre de 2017 en la maker faire de NY: https://blog.arduino.cc/2017/09/25/introducing-the-arduino-mkr-wan-1300-and-mkr-gsm-1400/

Arduino + LoRa:

Arduino MKR GSM 1400

Web: https://store.arduino.cc/mkr-gsm-1400

Presentado el 25 de septiembre de 2017 en la maker faire de NY: https://blog.arduino.cc/2017/09/25/introducing-the-arduino-mkr-wan-1300-and-mkr-gsm-1400/

Arduino + GSM:

Accesorios para Arduinos MKR

Otros Arduinos oficiales

Existen aun mas Arduino oficiales:

Otros:

Todos los productos de Arduino: https://www.arduino.cc/en/Main/Products

Arduinos para Wearables

Arduino Lilypad

Web: https://store.arduino.cc/lilypad-arduino-main-board

Diseñado para dispositivos “wearables” y e-textiles. Para coser con hilo conductor e instalarlo sobre prendas.

Más información para fabricar wearable con arduino en: http://lilypadarduino.org/

Otros:

Retirados

Hay modelos retirados, pero la documentación sigue disponible y es posible aun comprarlas por terceros que las fabrican o fabricarlas uno mismo.

Arduino 101

Web: https://store.arduino.cc/genuino-101

Es el sucesor del Arduino UNO con procesador Intel Curie Quark de 32 bit diseñado para ofrecer el mínimo consumo de energía, 384 KB de memoria flash, 80 KB de SRAM, un sensor DSP integrado, bluetooth de baja energía, acelerómetro y giroscopio de 6 ejes.

Video de 101: https://blog.arduino.cc/2016/01/13/unboxing-and-setup-of-arduino-101/

Código Firmware: https://github.com/01org/corelibs-arduino101 que no hace falta instalarlo porque ya viene integrado en el IDE de arduino.cc y desde el gestor de librerías se instala en: C:\Users\<user>\AppData\Local\Arduino15\packages\Intel\hardware\arc32\1.0.5

Review completa del 101: http://www.kitguru.net/components/cpu/james-morris/intel-genuino-101-review/

Intel ha descontinuado la gama de microcontroladores usados en diversos Arduinos, lo que parece el fin de la asociación entre Intel y Arduino, más aun cuando Arduino ha firmado un acuerdo con ARM.

Placas Compatibles Arduino

La marca Arduino está protegida y solo puede usarse por Arduino, pero debido a que se trata de hardware libre, existen multitud de placas disponibles que bien son clones, placas derivadas (forks) u otras placas totalmente independientes pero que la comunidad ha desarrollado el código para poder programarlas con el lenguaje de programación de Arduino.

Cuando hablamos de placas compatibles con Arduino, son aquellas que se pueden programar con el IDE de Arduino.

Listado no oficial de placas de terceros soportadas por el IDE de Arduino: https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls

Funduino

Web: https://www.funduinoshop.com/epages/78096195.sf/en_GB/?ViewObjectPath=%2FShops%2F78096195

Chipkit

Web: http://chipkit.net/

ESP8266

Web: https://espressif.com/en/products/hardware/esp8266ex/overview

Moteino

Web: https://lowpowerlab.com/guide/moteino/

Resumen

Arduino.cc products: https://www.arduino.cc/en/Main/Products

Como distinguir un arduino oficial de una copia: http://arduino.cc/en/Products/Counterfeit

Guía para comparar Arduino:  https://learn.sparkfun.com/tutorials/arduino-comparison-guide