Entrada destacada
aprendiendoarduino_logo

Análisis: Kits Aprendizaje XBee de Digi

La gente de Digi en Logroño me ha dejado para probar dos kits de aprendizaje para que los pruebe y de paso me sirvan para preparar la parte de comunicación inlambrica del curso Arduino avanzado en http://www.aprendiendoarduino.com/arduino-avanzado-2016/.

Los kits que he probado son:

Se trata de unos kits de aprendizaje de los famosos módulos RF XBee que fabrica Digi para comunicación inalámbrica y que pueden adquirirse en digi-key electronics http://www.digikey.es/

En la caja de ambos kits viene todo el hardware y el enlace a la web donde se encuentran los tutoriales y guías para el uso de los kits.

Veamos por separado cada uno de los kits.

Digi Wireless Connectivity Kit

Aunque el uso que voy a hacer los los módulos va a ser siempre con Arduino, me decidí empezar con este kit que no tiene Arduino ni posibilidad de conectar con un microcontrolador directamente, porque me parecía más sencillo y me quería centrar en aprender la tecnología ZigBee y manejar los módulos XBee de Digi, y no me equivoqué.

Luego con el siguiente kit (XBee Arduino Compatible Coding Platform) y los conocimientos adquiridos, me resultó más fácil manejar los módulos XBee con Arduino.

El hardware de este kit es muy sencillo, se compone de dos módulos XBee serie 1 o XBee 802.15.4 que son unos módulos muy sencillos de Xbee, dos placas de desarrollo para los módulos con conectores grove y dos cables micro USB para conectar las placas de desarrollo al ordenador.

wireless_connectivity_kit_500x316

Este hardware puede comprarse en digi-key en el siguiente enlace: http://www.digikey.es/product-detail/es/digi-international/XKB2-AT-WWC/602-1551-ND/5305247 y tiene un coste de 59$ (aproximadamente 53€).

En la web de digi-key hay un kit nuevo http://www.digikey.es/product-detail/es/digi-international/XKB2-A2T-WWC/602-1902-ND/6010111 que usa los módulos XBee S2C 802.15.4

En mi caso el que he probado es el que lleva los módulos Serie 1:

También hay otros kits disponibles: http://www.digikey.es/en/product-highlight/d/digi-intl/xbee-arduino-coding-platform

Sobre el hardware, decir que es muy sencillo y útil para el aprendizaje, pero luego solo se podría reutilizar los módulos RF, porque las placas de desarrollo no les veo mucha salida salvo para hacer las prácticas propuestas en el kit. A estas placas de desarrollo les añadiría una salida accesible del puerto serie con un selector a 3.3 o 5 V para poder conectarlas a una Raspberry Pi o un Arduino y poder seguir usándolas y aprender la integración con otros dispositivos, ya que sino están limitadas al uso con el ordenador.

Para usar este hardware Digi pone a disposición de los compradores del kit y del resto del mundo un tutorial que va contando paso a paso cómo montar los módulos, como instalar el software necesario para configurar y manejar los Xbee, explica cómo funcionan los módulos y en cada apartado propone ejercicios prácticos para usarlo con el kit adquirido.

Este completo tutorial es accesible desde: http://www.digi.com/resources/documentation/Digidocs/90001456-13/Default.htm

PDF del tutorial: http://www.digi.com/resources/documentation/digidocs/pdfs/90001456-13.pdf

Este tutorial es la gran aportación de Digi para aprender a manejar sus módulos RF desde cero y te guia paso a paso como si de un curso online fuera.

El tutorial comienza con ejemplos muy sencillos y hace una guía paso a paso para aprender el manejo los módulos. Los puntos más importantes que se ven son:

Este tutorial es perfecto para aprender a manejar los módulos de una forma muy didáctica, aunque en algunos aspectos se queda corto en la explicación (al menos para los más curiosos) y hay que hacer un acto de fe que con esa configuración funciona, pero en algún caso sin explicar bien porqué. Esa falta de información puede llevar a error en un par de casos a la hora de hacer funcionar la práctica, pero pensando un poco es sencillo resolverlo.

Otro defecto de este tutorial, al menos para mi, es que los ejercicios más interesantes los hace con Java para crear una aplicación en el ordenador que se conecte a los módulos e interactúe con ellos, pero yo añadiría esos mismos ejercicios con algún otro lenguaje como python con .NET.

El objetivo de este kit junto con el manual es aprender a manejar los módulos RF de XBee para la conexión de dispositivos y sensores y lo cumple a la perfección. Además por aprox. 53€ después de aprender a usarlos puedes reutilizar los módulos XBee en cualquier proyecto.

Para mis cursos en www.aprendiendoarduino.com uso como base este tutorial para enseñar como manejar los módulos Xbee.

XBee Arduino Compatible Coding Platform

El segundo kit de aprendizaje de Digi que he probado, comencé a usarlo cuando ya había probando a fondo el anterior (Wireless Connectivity Kit) y conocía bien el uso de los módulos RF de XBee, lo que me facilitó mucho el uso de este kit, puesto que la parte más teórica del funcionamiento de los módulos de XBee no viene en el tutorial de este kit.

El hardware de este kit es muy completo y trae entre otras cosas:

Todo el contenido del kit está en http://docs.digi.com/display/XBeeArduinoCodingPlatform/Kit+contents

wirelessgamekit

Este hardware puede comprarse en digi-key en el siguiente enlace por 99$ (aproximadamente 89,11€): http://www.digikey.es/product-detail/en/digi-international/XKB2-AT-WWG/602-1550-ND/5271212

La verdad es que es un buen precio por el kit teniendo en cuenta que tenemos 3 módulos XBee.

Datasheets:

Sobre el hardware, decir que es muy completo y que todos los materiales que vienen pueden ser reutilizados para otros proyectos.

Para usar este hardware Digi pone a disposición de los compradores del kit y del resto del mundo un tutorial que va contando paso a paso diversos proyectos enfocados al juego, tanto con Arduino como interacción con el ordenador.

El tutorial es accesible desde: http://docs.digi.com/display/XBeeArduinoCodingPlatform/XBee+Arduino+Compatible+Coding+Platform

Este tutorial empieza haciendo una breve descripción del kit y luego explica la instalación del software XCTU y un primer ejemplo. Luego ya entra de lleno en los proyectos.

El kit incluye cinco proyectos con processing para demostrar la interacción con software y otros 5 proyectos con Arduino, para hacer circuitos inalámbricos con los módulos XBee.

Este tutorial se centra en los proyectos que son muy didácticos, pero apenas trata la parte más teórica del funcionamiento de XBee. En algunos proyectos hay enlaces a los aspectos de cómo funcionan los módulos XBee, pero están un poco escondidos y no son accesibles desde el menú lateral.

Los proyectos me gustan, pero de nuevo hay que hacer un acto de fe que las configuraciones que nos dan funcionan, aunque no se explica porque los parámetros que funcionan son esos y no otros.

Al final de cada proyecto hay un apartado llamado “Learn More” y en muchos casos apunta al tutorial del anterior kit (Wireless Connectivity Kit), lo que confirma mi idea que antes de empezar con este kit, es recomendable leer el tutorial del kit anterior si quieres conocer bien el manejo de los módulos XBee.

Después de los proyectos y para finalizar hay varios apartados de información adicional, especialmente interesantes el de troubleshooting y XBee buying guide.

Proyectos Usando Processing

Los proyectos propuestos en este tutorial para interacción de XBee con software, en este caso con processing, son:

Todo el código está disponible en:

Estos proyectos no están actualizados a la última versión 3 de processing, lo que provoca que aparezca algún pequeño error en el código fácilmente solucionable.

Estos 5 proyectos son básicamente iguales y nos enseñan cómo interactuar hardware y software de forma inalámbrica. Nos da la configuración de los dos módulos, uno conectado al ordenador y otro a unos botones, potenciómetros, etc… y nos da el software a ejecutar. Luego simplemente es ver como interactua.

Los dos primeros proyectos demuestra el pin pairing y cómo funciona la librería de XBee en processing y por lo tanto en ese caso el módulo XBee debe estar en modo API. El cuarto proyecto es igual que el segundo pero en lugar de usar un módulo, usa dos módulos. En el tercer proyecto añade un tercer módulo y la entradas analógicas con un potenciómetro y el envío de lecturas cada 100 ms. El último proyecto mezcla lo aprendido en los anteriores y monta un controlador de juegos inalámbrico.

Una mejora que podría incluir el código de processing es sacar por pantalla lo recibido por el módulo XBee, que serviría para hacer debug y aprender un poco más del modo API. Sería sencillo añadir esa funcionalidad por nuestra parte.

También sería interesante añadir a este kit algún ejemplo con lenguajes de programación más usados como python o .NET.

Proyectos Usando Arduino

Los proyectos propuestos en este tutorial para uso de XBee con Arduino son:

Los 4 primeros proyectos son muy parecidos trabajando la comunicación inalámbrica con Arduino, la librería de XBee y los conceptos de cambio de estado de pin y las entradas y salidas de los módulos XBee. El último ejemplo introduce otros conceptos como el de coordinador y RSSI o indicador de fuerza de señal recibida.

Al contrario que tutorial del anterior kit, no se habla casi nada de la parte de cómo funcionan los módulos XBee y cómo interactúan con Arduino. Hay un apartado de trabajando con Arduino http://docs.digi.com/display/XBeeArduinoCodingPlatform/Working+with+Arduino donde se ven unas nociones básicas de Arduino y otra de como instalar la librería xbee-arduino en http://docs.digi.com/display/XBeeArduinoCodingPlatform/Installing+the+xbee-arduino+library, pero no está actualizado a las nuevas versiones del IDE de Arduino, aunque en el enlace al repositorio de github de la librería si lo explica: https://github.com/andrewrapp/xbee-arduino

Un aspecto que sería muy interesante es documentar la librería xbee-arduino explicando que hace cada método de los disponibles, porque sino no nos queda más remedio que ponerse a leer el código de la librería y averiguarlo por tu cuenta.

El código de los ejercicios está disponible en https://github.com/digidotcom/XBeeArduinoCodingPlatform para descargar o hacer fork.

A la hora de hacer los ejercicios, si algo no funciona, es imposible hacer troubleshooting porque no se proporciona una forma de mandar por puerto serie todo lo que le llega de Arduino. Un poco de debug es necesario no solo para ver que puede estar fallando sino para aprender cómo funciona la comunicación entre Arduino y XBee.

Este kit tiene 3 módulos pero sólo es posible hacer ejemplos de comunicación multipunto, pero no es posible hacer esquemas de comunicación mesh, puestos que los módulos del kit no tienen esa funcionalidad.

En este tutorial apenas se ofrece parte teórica, lo que hace que si no hubiera hecho el anterior tutorial me hubiera costado un poco más entender el funcionamiento de los módulos XBee o hacer un acto de fe de que las configuraciones funcionan, pero la parte de la explicación de las conexiones y los proyectos es muy buena.

Los puntos más interesantes del tutorial son:

El objetivo de este kit junto con el manual es aprender más sobre cómo los módulos XBee pueden integrarse fácil y rápidamente con otros elementos (como Arduino o software) para conseguir conectividad inalámbrica y en mi opinión se consigue.

Conclusión

La gran ventaja de uso de los módulos RF XBee frente a otros es la sencillez de uso gracias al potente programa de configuración XCTU. Esto permite aplicar tecnología inalámbrica de forma rápida y sencilla a nuestros proyectos. La desventaja es el precio, son más caros que otros módulos equivalentes como los nRF24.

Con estos kits de aprendizaje se consigue aprender cómo funcionan los módulos XBee y cómo manejarlos. Los tutoriales disponibles en general están muy bien para aprender como si de un curso online se tratara.

Con estos kits he aprendido mucho, pero para los curiosos que nos gusta llegar más al fondo se quedan un poco cortos y he usado este documento http://www.hmangas.com/Electronica/Datasheets/Shield%20XBee%20Arduino/XBee-Guia_Usuario.pdf para profundizar y aclarar algunos conceptos.

Agradecer a Digi Logroño y en especial al Carlos que me hayan prestado este material y poder ampliar mi conocimiento sobre la tecnología XBee y así poder incluirla en mis cursos.

Más información de XBee en mis cursos y talleres de www.aprendiendoarduino.com y en el apartado XBee del curso avanzado de Arduino http://www.aprendiendoarduino.com/arduino-avanzado-2016/

Si quieres saber cuándo publicaré en la web los próximos cursos de XBee y donde los impartiré presencialmente, puedes enterar a través de mi twitter @jecrespom o en la lista de correo de #aprendiendoarduino http://list.aprendiendoarduino.com/mailman/listinfo/aprendiendoarduino.com.noticias

Qué es Arduino

Arduino es una plataforma de hardware libre, basada en una placa con un microcontrolador y un entorno de desarrollo, diseñada para facilitar el uso de la electrónica en proyectos multidisciplinares.

Hardware Libre: http://es.wikipedia.org/wiki/Hardware_libre

Por otro lado Arduino nos proporciona un  software consistente en un entorno de desarrollo (IDE) que implementa el lenguaje de programación de arduino y el bootloader ejecutado en la placa. La principal característica del software de programación y del lenguaje de programación es su sencillez y facilidad de uso

¿Para qué sirve Arduino? Arduino se puede utilizar para desarrollar elementos autónomos, conectándose a dispositivos e interactuar tanto con el hardware como con el software. Nos sirve tanto para controlar un elemento, pongamos por ejemplo un motor que nos suba o baje una persiana basada en la luz existente es una habitación, gracias a un sensor de luz conectado al Arduino, o bien para leer la información de una fuente, como puede ser un teclado, y convertir la información en una acción como puede ser encender una luz y pasar por un display lo tecleado.

Qué puede hacer Arduino? https://aprendiendoarduino.wordpress.com/2016/06/26/que-puede-hacer-arduino/

Entornos de aplicación de Arduino? https://aprendiendoarduino.wordpress.com/2016/06/26/entornos-de-aplicacion-arduino/

Hay otro factor importante en el éxito de Arduino, es la comunidad que apoya todo este desarrollo, comparte conocimiento, elabora librerías para facilitar el uso de Arduino y publica sus proyectos para que puedan ser replicados, mejorados o ser base para otro proyecto relacionado.

En resumen:

Arduino = HW + SW + Comunidad

HW Arduino

El HW de Arduino es básicamente una placa con un microcontrolador. Un microcontrolador (abreviado µC, UC o MCU) es un circuito integrado programable, capaz de ejecutar las órdenes grabadas en su memoria. Está compuesto de varios bloques funcionales, los cuales cumplen una tarea específica. Un microcontrolador incluye en su interior las tres principales unidades funcionales de una computadora: unidad central de procesamiento, memoria y periféricos de entrada/salida.

Características de un Microcontrolador:

  • Velocidad del reloj u oscilador
  • Tamaño de palabra
  • Memoria: SRAM, Flash, EEPROM, ROM, etc..
  • I/O Digitales
  • Entradas Analógicas
  • Salidas analógicas (PWM)
  • DAC (Digital to Analog Converter)
  • ADC (Analog to Digital Converter)
  • Buses
  • UART
  • Otras comunicaciones.

Arduino dispone de una amplia variedad de placas y shields para usar dependiendo de nuestras necesidades.

Un listado de placas de Arduino puede verse en https://aprendiendoarduino.wordpress.com/2016/06/26/placas-arduino/, pero en el siguiente capítulo de novedades en Arduino, se encuentra un listado de las placas de arduino.cc y arduino.org, así como otras placas compatibles con Arduino.

Un shield es una placa compatible que se puede colocar en la parte superior de los arduinos y permite extender las capacidades del arduino.

Un listado de shields para Arduino puede verse en https://aprendiendoarduino.wordpress.com/2016/06/27/shields-arduino-2/, pero en el siguiente capítulo de novedades en Arduino, se encuentra un listado de las shields de arduino.cc y arduino.org, así como otras placas compatibles con Arduino.

Las shields se pueden comunicar con el arduino bien por algunos de los pines digitales o analógicos o bien por algún bus como el SPI, I2C o puerto serie, así como usar algunos pines como interrupción. Además estas shields se alimenta generalmente a través del Arduino mediante los pines de 5V y GND.

Cada Shield de Arduino debe tener el mismo factor de forma que el estándar de Arduino con un espaciado de pines concreto para que solo haya una forma posible de encajarlo.

Además del HW de arduino.cc o arduino.org tenemos infinidad de placas que son clones o forks de las placas de Arduino y luego están las placas compatibles con Arduino, que son aquellas placas que no están basadas en las placas originales de Arduino y que puede usar otros microcontroladores, pero que se programan igual que Arduino e incluso con el mismo IDE.

Listados de placas Arduino y compatibles:

Dentro del entorno Arduino, podemos encontrar placas basadas en el microcontrolador ESP8266 con wifi integrado y pila de protocolos TCP/IP que no sigue el factor de forma de Arduino.

Placas de otros fabricantes de microcontroladores como Microchip o Mediatek con sus modelos ChipKit o LinkIt.

Y otros fabricantes de microcontroladores como ST Microelectronics que se ha aliado con arduino.org para sacar nuevos arduinos como el Arduino Otto.

Y por último un interesante artículo de David Cuartielles reflexionado sobre el HW libre y lo que supone mantener Arduino: http://david.cuartielles.com/b/2013/08/open-hasta-que-te-comen-la-merienda/

SW Arduino

El software de Arduino es un IDE, entorno de desarrollo integrado (siglas en inglés de Integrated Development Environment). Es un programa informático compuesto por un conjunto de herramientas de programación.

El IDE de Arduino es un entorno de programación que ha sido empaquetado como un programa de aplicación; es decir, consiste en un editor de código, un compilador, un depurador y un constructor de interfaz gráfica (GUI). Además incorpora las herramientas para cargar el programa ya compilado en la memoria flash del hardware.

Es destacable desde la aparición de la versión 1.6.2 la incorporación de la gestión de librerías y la gestión de placas muy mejoradas respecto a la versión anterior y los avisos de actualización de versiones de librerías y cores.

Todos lo cambios en la versiones pueden verse en: https://www.arduino.cc/en/Main/ReleaseNotes

Código fuente del IDE de Arduino está disponible en: https://github.com/arduino/Arduino/  y las instrucciones para construir el IDE desde código fuente pueden verse en: https://github.com/arduino/Arduino/wiki/Building-Arduino

Podemos también ver los problemas/bugs detectados de la version actual y hacer un seguimiento de ellos: https://github.com/arduino/Arduino/issues y en http://forum.arduino.cc/index.php?board=2.0

Con la división de Arduino, no solo se ha producido una división en las placas sino también en los IDEs. arduino.org tiene su IDE en http://www.arduino.org/downloads pero se trata de un fork del IDE de arduino.cc. En el siguiente capítulo de novedades Arduino se tratará este tema en profundidad.

En principio el IDE de arduino solo tenía soporte para las placas Arduino y los clones o forks con los mismos microcontroladores que los Arduinos oficiales. Desde la versión 1.6.2 del IDE de arduino.cc y gracias al gestor de placas, podemos añadir soporte a otros microcontroladores y placas al IDE de Arduino, como al ESP8266.

Listado de URLs para soporte de tarjetas no oficiales: https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls

Además de los clásicos IDEs hay disponibles otros IDEs oficiales. Arduino.cc tiene disponible un IDE on-line dentro del entorno Arduino Create https://create.arduino.cc/ que es una plataforma on-line integrada que permite escribir código, acceder a contenido, configurar placas y compartir proyectos, muy enfocado al Internet de las Cosas (IoT).

Por parte de arduino.org está desarrollando un nuevo IDE denominado Arduino Studio, que aun se encuentra en una versión de pruebas. Más información en http://labs.arduino.org/Arduino%20Studio y código fuente en https://github.com/arduino-org/ArduinoStudio

Además existen otros IDEs alternativos como Atmel Studio https://github.com/arduino-org/ArduinoStudio que se verán a lo largo del curso.

Comunidad Arduino

Un factor del éxito de Arduino ha sido la comunidad que está apoyando este proyecto y que día a día publica nuevo contenido, divulga y responde a las dudas.

En Internet hay disponible todo tipo de cursos, tutoriales, herramientas de consulta, proyectos, etc… que ayudan a que se pueda usar Arduino con facilidad.

El primer sitio donde empezar para trabajar con Arduino es http://www.arduino.cc/ y el segundo sitio el playground de Arduino http://playground.arduino.cc/

Arduino playground es un wiki donde todos los usuarios de Arduino pueden contribuir. Es el lugar donde publicar y compartir código, diagrama de circuitos, tutoriales, trucos, cursos, etc.. y sobretodo el lugar donde buscar cuando tengamos dudas, un problema, una librería adecuada para nuestro proyecto, etc… Esa la base de datos de conocimiento por excelencia de Arduino.

Arduino playground: http://playground.arduino.cc/

Algunos apartados importantes en playground.

Otro lugar donde la comunidad colabora, se puede buscar información y preguntar las dudas que tengamos, es el foro Arduino: http://forum.arduino.cc/.

También existen lugares no oficiales de Arduino donde resolver nuestras dudas:

Arduino en las redes sociales:

Otro lugar de encuentro de la comunidad son diversos portales donde se publican proyectos con Arduino:

Por último, también hay espacios locales para la comunidad, son los llamados hacklabs hackerspace, makerspace, etc.. que aunque hay ciertas diferencias entre unos y otros, se trata de un sitio físico donde gente con intereses en ciencia, nuevas tecnologías, y artes digitales o electrónicas se puede conocer, socializar y colaborar. Puede ser visto como un laboratorio de comunidad abierta, un espacio donde gente de diversos trasfondos puede unirse. Pone al alcance de aficionados y estudiantes de diferentes niveles la infraestructura y ambiente necesarios para desarrollar sus proyectos tecnológicos.

Hacklab: https://es.wikipedia.org/wiki/Hacklab

Mejores prácticas Hackerspaces: https://elplatt.com/new-hackerspace-design-patterns

Listado de Hackerspaces: https://hackerspaces.org/wiki/List_of_ALL_Hacker_Spaces

También hay otro espacio local algo diferente que son los fablabs: es un espacio de producción de objetos físicos a escala personal o local que agrupa máquinas controladas por ordenadores.

Fablab: https://es.wikipedia.org/wiki/Fab_lab

Qué es un fablab: http://fab.cba.mit.edu/about/charter/

Este podcast explica las diferencias entre estos espacios: http://make.cesargarciasaez.com/2016/02/01/la-hora-maker-010-fablabs-makespaces-hackerspaces-y-hacklabs/

Movimiento maker: https://en.wikipedia.org/wiki/Maker_culture

Novedades Arduino

Todo lo relacionado con el HW libre y en concreto con Arduino y placas derivadas o compatibles con Arduino está evolucionando continuamente, por lo tanto debemos estar atentos a las noticias y tendencias en este sector.

La principal noticia sobre Arduino ocurrida en los últimos años y que supone bastantes cambios en el HW y SW de Arduino es la división de Arduino en dos empresas y dos webs oficiales de Arduino: arduino.cc (Arduino LLC) y arduino.org (Arduino Slr).

A principios de 2015 se produjo una división dentro de Arduino y desde entonces han aparecido bastante cambios para los usuarios de Arduino, la primera es que ha aparecido una nueva marca llamada “Genuino” asociada a arduino.cc y una nueva web oficial de Arduino www.arduino.org. Pero no solo es que haya dos páginas web oficiales de Arduino, sino que ahora hay dos entornos de programación y han aparecido nuevos modelos de placas Arduino pero fabricadas por diferentes empresas.

En este momento hay dos páginas oficiales de Arduino: www.arduino.cc y www.arduino.org, la primera es la que nació originalmente y la segunda es la que se creó a raiz del la división entre el equipo creador de Arduino y la empresa que fabricaba el Hardware en Italia.

Cada una de estas webs tienen placas Arduino diferentes, IDEs diferentes y marcas diferentes con la aparición de Genuino fuera de EEUU. Esto puede causar cierta confusión a los usuarios de Arduino pero vamos a aclararlo en este capítulo.

Un poco de Historia

Arduino LLC fue la compañía creada por Massimo Banzi, David Cuartielles, David Mellis, Tom Igoe and Gianluca Martino en 2009 y era la propietaria de la marca Arduino. Las placas Arduino eran fabricadas por una spinoff llamada Smart Projects Srl creada por Gianluca Martino. En noviembre de 2014 cambiaron el nombre de la empresa que manufactura las placas Arduino de Smart Projects Srl a Arduino Srl y registraron el dominio arduino.org, esto fue el inicio de la división que se produjo poco después.

Hasta principios de 2015 la web oficial de Arduino era www.arduino.cc mantenida por los creadores de Arduino y todo su equipo. En febrero de 2015 se hizo público la ruptura entre los fundadores de Arduino y el fabricante de las placas de Arduino liderado por Gianluca Martino, comenzando este una nueva dirección del proyecto Arduino con la empresa Arduino Srl.

Más información en estos enlaces:

En mayo de 2015 Massimo Banzi anunció la nueva marca de Arduino y el nuevo desarrollo de Arduino en la Maker Faire Bay Area 2015. Ver: https://blog.arduino.cc/2015/05/22/the-state-of-arduino-a-new-sister-brand-announced/

En enero de 2016 Federico Musto de Arduino SRL publicó los futuros nuevos productos y direcciones de arduino.org en http://hackaday.com/2016/01/04/new-products-and-new-directions-an-interview-with-federico-musto-of-arduino-srl/.

A partir de esta ruptura, durante 2015 se vivieron muchos cambios en ambas páginas web, mejoras notables en el IDE oficial de Arduino de www.arduino.cc y la aparición de dos nuevos IDEs de Arduino desde www.arduino.org, uno como un fork del original y otro un nuevo desarrollo de arduino.org llamado Arduino Studio escrito de nuevo completamente en javascript y basado en Brackets, pero que aun está en versión alpha.

Podemos resumir que ahora mismo hay dos empresas: Arduino LLC con Massimo Banzi y los demás co-fundadores de Arduino y Arduino SRL con Gianluca Martino y Federico Musto, este último no perteneciente al equipo original e incorporado posteriormente.

Actualmente arduino.cc son https://www.arduino.cc/en/Main/AboutUs

Más información sobre la historia de Arduino, ver el artículo de Hernando Barragán sobre la historia no contada de Arduino: https://arduinohistory.github.io/ donde también se explica el origen de Arduino tomando como base Wiring http://wiring.org.co/  

Las marcas Arduino

Puesto que las placas Arduino son open source, cualquiera puede hacer una placa Arduino compatible o incluso una copia exacta, sin embargo el nombre, la marca Arduino y el logotipo están protegidos: https://www.arduino.cc/en/Trademark/HomePage.

Ahora mismo en europa la marca y el logo arduino es usado por arduino.org y en USA es usado por arduino.cc. Por este motivo fuera de USA arduino.cc ha sacado una nueva marca llamada GENUINO y un nuevo logo.

Genuino es la marca de arduino.cc creada por los fundadores de Arduino y usada para las placas y productos vendidos fuera de Estados Unidos. Más información en: https://www.arduino.cc/en/Main/GenuinoBrand

Por lo tanto cuando vemos una placa genuino, se trata de una placa Arduino LLC. Se puede decir que Arduino y Genuino son lo mismo pero por temas legales debe tener un nombre/marca diferente.

Las dos webs a fondo

www.arduino.cc es el sitio original de Arduino de los creadores de Arduino y www.arduino.org es un “fork” creado por la empresa que fabricaba las placas Arduino. Ambas páginas tratan sobre Arduino pero fabrican placas diferentes, nos ofrecen IDEs diferentes y contiene información de cada uno de sus productos.

Arduino.cc

Como hemos dicho es la web original de Arduino y la que conocen bien todos los que han trabajado con Arduino. Los elementos más importantes de esta web son:

La web de arduino.cc ha evolucionado mucho en los meses posteriores a la división de Arduino. Ha cambiado la imagen y han actualizado y añadido contenidos muy interesantes.

Se pueden ver las novedades en la entrada del blog de arduino.cc: https://blog.arduino.cc/2015/09/11/keeping-the-arduino-website-in-motion/

Arduino.org

Web oficial de la marca Arduino fuera de USA. Los elementos más importantes de esta web son:

El Hardware Arduino

La división de Arduino en dos partes ha provocado que haya dos tipos de placas  Arduino originales con marcas diferentes como hemos visto. En la página arduino.org se encuentra disponibles productos que en el arduino.cc no están y viceversa.

arduino.cc tiene un acuerdos con adafruit y seeedstudio para manufacturar sus placas y también tiene nuevos acuerdos para usar MCUs de Intel además de los de Atmel, como el arduino 101 con chip intel curie.

Anuncios de los acuerdos de arduino.cc

Las placas oficiales para Europa de genuino son:

  • Genuino MICRO: https://www.arduino.cc/en/Main/ArduinoBoardMicro version reducida con MCU Atmel AVR de 8 bits ATmega32U4
  • Genuino MEGA: https://www.arduino.cc/en/Main/ArduinoBoardMega2560 la versión más potente con MCU Atmel AVR de 8 bits ATmega2560 y mayor cantidad de puertos  I/O y comunicación.
  • Genuino ZERO: https://www.arduino.cc/en/Main/ArduinoBoardZero version con procesador Atmel ARM Cortex M0+ de 32bits SAMD21. Esta placa solo soporta hasta 3.3V en lugar de los 5V de las anteriores. Dispone de un Atmel Embedded Debugger (EDGB). Exclusiva de arduino.cc, pero es igual que la Arduino M0 pro
  • Genuino MKR1000: https://www.arduino.cc/en/Main/ArduinoMKR1000 version para IoT con procesador Atmel ARM Cortex M0+ de 32bits ATSAMW25 que es el mismo procesador que Genuino Zero pero con wifi integrado, chip de cifrado y antena integrada. También dispone de entrada de batería y cargador para baterías LiPo de una celda. Exclusiva de arduino.cc

Shields oficiales para Europa de genuino son:

  • Genuino Yun Shield: https://www.arduino.cc/en/Main/ArduinoYunShield que permite dar las caracteristicas de Arduino Yun a cualquier arduino. Es la placa perfecta para proyectos de IoT y gracias a la librería bridge su uso es muy sencillo. Exclusiva de arduino.cc

Para el mercado USA arduino.cc oferece un mayor número de placas con la marca Arduino: https://www.arduino.cc/en/Main/Products.

En cada uno de los enlaces tenemos amplia información de cada placa y todo tipo de documentación sobre ellas, que es imprescindible leer antes de comenzar a usarlas.

arduino.org es fabricante de sus propias placas en Italia y se habló de conversaciones para fabricar con Panasonic y Bosch para expandir por el mundo la fabricación de placas Arduino y reducir su coste según http://readwrite.com/2015/03/18/arduino-open-source-schism/

Las placas de arduino.org disponibles son:

Los shields de arduino.org disponibles son:

Los IDEs de Arduino

Arduino no es solo Hardware, sino también el software que nos facilita programar el microcontrolador. Esta división en el hardware también se ha visto reflejada en la división de software teniendo ahora dos IDEs oficiales de Arduino, el de arduino.cc y el de arduino.org.

Una consecuencia de esta división es que las placas de arduino.org pueden no funcionar con el IDE original de arduino.cc ni al contrario. Para resolver este problema, la solución más sencilla este tener instalados ambos IDEs. Pero si solo queremos usar un IDE o nos gusta uno más que otro, siempre se pueden hacer pequeñas modificaciones en el IDE para poder usar las placas de un arduino en el IDE del otro arduino.

Si abrimos en cada uno de los IDEs las placas soportadas, podemos ver las diferencias. El listado de placas soportadas por cada IDE difiere un poco:

Placas IDE arduino.cc Placas IDE arduino.org
 
 

Lo más probable es que haya problemas con los Arduinos nuevos que vayan saliendo a partir de 2015, pero con los arduinos anteriores a la división de Arduino seguirán siendo soportados en ambos IDEs, puesto que son esencialmente las mismas placas. Lo mismo ocurre con los shields.

También es posible que cada uno de los IDEs de arduino.cc y arduino.org tengan versiones diferentes de las librerías que tienen incluidas, esto nos puede traer problemas al usar un sketch en un IDE o en otro y habrá que tenerlo en cuenta.

Puede que nos aparezcan avisos de placas no certificadas al usar un IDE diferente del fabricante de la placa como el que se añadió en: https://github.com/arduino/Arduino/commit/39d1dfc9995e75e858fa238c7c8881ee2d7679c6

Esto se debe a que arduino.cc y arduino.org tienen su propio identificador de USB (vendor ID) y lo detectan los IDEs. También puede pasar con falsificaciones o clones de placas arduino. El vendor ID para arduino.cc es 0x2341 y por ejemplo para el Arduno UNO el product ID es 0x0001. El vendor ID para arduino.org es 0x2A03 que pertenece a la empresa Dog Hunter AG.

Más información de la diferencia entre los IDEs: https://www.330ohms.com/blogs/blog/115110980-el-ide-de-arduino-cc-y-arduino-org-son-lo-mismo

IDE Arduino.cc

Es el IDE original de Arduino pero que desde la aparición de la versión 1.6.2 hay grandes mejoras que incluyen la gestión de librerías y gestión de placas muy mejoradas respecto a la versión anterior, así como los avisos de actualización de versiones de librerías y cores.

Todos los cambios en la versiones pueden verse en: https://www.arduino.cc/en/Main/ReleaseNotes

El IDE está disponible en: https://www.arduino.cc/en/Main/Software

Guia de inicio en: https://www.arduino.cc/en/Guide/HomePage

Código fuente del IDE: https://github.com/arduino/Arduino/

En verano de 2016 arduino.cc libero finalmente al público su IDE on-line o Arduino Web Editor dentro del portal Arduino Create:  https://create.arduino.cc/. Es un IDE online similar al IDE de Arduino que te permite tener siempre la versión actualizada del propio IDE, librerías y cores de las MCUs, así como guardar online los sketches en la nube.

Más información de Arduino Create:

Para usarlo es necesario usar un agente e instalarlo en el ordenador. Código fuente del agente: https://github.com/arduino/arduino-create-agent

El portal Arduino Create además de tener el IDE on-line dispone de:

IDE Arduino.org

Se trata de un fork del IDE de arduino.cc que a su vez deriva de Wiring http://wiring.org.co/. Este IDE no dispone de la gestión mejorada de librerías y placas, algo que se echa en falta.

Ambos IDEs son actualmente muy similares a simple vista, pero en el interior hay bastantes diferencias.

IMPORTANTE: la versión del IDE de arduino.org es actualmente la 1.7.11, puede llevar a error y pensar que es una versión superior al IDE de arduino.cc que va por la version 1.6.12, pero no es cierto, se trata de un IDE diferente, es más, el IDE de arduino.org está menos evolucionado que el IDE de arduino.cc. Ver Issue: https://github.com/arduino-org/Arduino/issues/2

IMPORTANTE: si ya tienes instalado el IDE de arduino.cc, el instalador del IDE de arduino.org trata de desinstalarlo como si fuera una versión anterior, cuando realmente es un IDE diferente. Por este motivo es mejor hacer una instalación manual del IDE de arduino.org mediante la descarga del fichero zip, en lugar de usar el instalador.

La pantalla de preferencias y la ruta donde se guardan estas preferencia en los dos IDEs es diferente y su configuración es importante si vamos a tener en nuestro ordenador conviviendo ambos IDEs y queremos que compartan librerías y sketches.

Para el IDE de arduino.cc, desde la pantalla de preferencias del IDE configuramos la ruta donde se guardan los sketches y librerías, de forma que al instalar una actualización mantenemos todos sketches y librerías o si instalamos varios IDEs van a compartir estos elementos.

  • Las preferencias se guardan en: C:\Users\nombre_usuario\AppData\Local\Arduino15, así como el listado de librerías y placas disponibles desde el gestor de librerías y tarjetas.
  • Los sketches y librerías se guardan en C:\Users\nombre_usuario\Documentos\Arduino

Para el IDE de arduino.org las preferencias son:

  • Las preferencias se guardan en: C:\Users\nombre_usuario\AppData\Roaming\Arduino15\preferences.txt, cuya ruta es diferente al IDE de arduino.cc y por lo tanto no comparten preferencias.
  • Los sketches y librerías se guardan en C:\Users\nombre_usuario\Documentos\Arduino, que lo comparte con el IDE de arduino.cc por lo que disponemos de los mismo sketches y librerías en ambos IDEs, pero podemos cambiar esta configuración para separar ambos IDEs.

Arduino Studio de Arduino.org: Es un nuevo entorno de desarrollo open source que se encuentra en version Alpha (de hecho ha desaparecido de la zona de descarga de arduino.org). Es un nuevo IDE totalmente diferente al IDE original y creado desde cero. Está escrito en Javascript y basado en Brackets: http://brackets.io/  

De momento es una versión en prueba, pero habrá que seguir su evolución. Su filosofía es: “Just one editor for all the environments”

Esta imagen define la estrategia de arduino.org en cuanto a los IDEs:

Distribuciones Linux Embebido

Además de los entornos de programación que nos ofrecen arduino.cc y arduino.org, tenemos otro apartado de software diferenciado que es el Sistema Operativo basado en Linux que corre dentro de los Arduinos con procesador MIPS Qualcomm Atheros como el Yun o el Tian.

arduino.cc distribuye para los Arduino Yun el openwrt-yun en su version 1.5.3.

Para descargarlo: https://www.arduino.cc/en/Main/Software

Instrucciones para instalarlo: https://www.arduino.cc/en/Tutorial/YunSysupgrade

La librería usada para comunicar el microcontrolador con linux se llama Bridge:

arduino.org usa Linino OS (http://www.linino.org/) que es una distribución Linux basada en OpenWRT e integrado con LininoIO. LininoOS es usado por Arduino Yun, Yun Mini, Tian e Industrial 101

Más información sobre Linino OS en http://wiki.linino.org/doku.php

LininoIO es un framework capaz de integrar las capacidades de un microcontrolador dentro de un entorno Linux. Es posible escribir una aplicación en Python, Node.js, etc… usando LininiOS para controlar completamente la MCU y los dispositivos conectados.

La librería usada para comunicar el microcontrolador con linux se llama Arduino Ciao. Simplifica la interacción entre el microcontrolador y LininoOS permitiendo su conexión la mayoría de protocolos y servicios de terceros.

Más información: http://www.arduino.org/learning/reference/ciao-library

Ciao se divide en dos partes:

Cómo funciona Ciao:

La librería Ciao aún está en desarrollo. El reference de la librería está en:

Guía de inicio con Ciao: http://labs.arduino.org/Ciao+setup

Linino.org también tiene sus placas que son similares a las de arduino.org: http://www.linino.org/linino-modules/

Placas Compatibles Arduino

No solo hay novedades en torno a la división de Arduino, en los últimos años han aparecido muchas placas de prototipado basadas en diferentes microcontroladores que bien por acuerdos con Arduino, por los propios fabricante de los microcontroladores o por la comunidad, estas placas tienen soporte del IDE de Arduino y es posible programarlas como el resto de Arduinos oficiales.

Placas no Arduino con soporte para el IDE de arduino.cc: https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls

Este es un listado de algunas de las placas que han aparecido y que tienen mayor popularidad entre la comunidad de Arduino:

Listado de placas similares a Arduino y shields: http://playground.arduino.cc/Main/SimilarBoards

Shields Compatibles con Arduino

Respecto a las shields, continuamente están saliendo interesantes shields para Arduino que amplían las capacidades de las placas. Merece la pena estar atento a los principales fabricantes de placas para ver las novedades de nuevas shields y HW para Arduino.

Uso de Motores

Motores DC

Ejercicio Motor DC Básico. Mover un motor DC variando la velocidad y sentido mediante un potenciómetro.

Basado en http://diymakers.es/control-velocidad-y-sentido-de-motor-dc/

Esquema de conexión.

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio54-MotorDC_Basico

Ejercicio Avanzado 1. Mover un motor DC de 9V usando un integrado L293D (Quadruple Half-H driver). Para controlar la velocidad del motor se usará un potenciómetro conectado al pin A0. Además se usarán dos botones, uno conectado al pin digital 4 para controlar el sentido de giro del motor y otro conectado al pin digital 5 que controlará el encendido y apagado del motor. Con cada pulsación encendemos y apagamos el motor o usamos una dirección de giro u otra con el otro botón.

NOTA: en este caso para controlar la velocidad del motor uso el pin enable del L293D en lugar de los dos pines de control.

Datasheet: https://www.arduino.cc/documents/datasheets/H-bridge_motor_driver.PDF

Montaje:

ejercicio21_bb

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio21-MotorDC_1

Ejercicio Motor Shield: Uso del Arduino Motor Shield para controlar la dirección de giro un motor DC. En este caso es necesario alimentar Arduino con una fuente de alimentación o mediante una batería, puesto que con la energía de USB no es posible mover el motor. También es posible alimentar Arduino por USB y alimentar independientemente el shield a través de las bornas marcadas con + y -. El voltaje debe ser el correspondiente al que use el motor DC.

Tutorial: https://www.arduino.cc/en/Tutorial/DueMotorShieldDC

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio47-Motor_Shield

Servo

Ejercicio: Controlar la posición de un servo con un potenciómetro.

Tutorial: http://arduino.cc/en/Tutorial/Knob

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio55-Servo/Knob

Ejercicio: Programar un barrido continuo del 0 a 180º en un servo. Activar y desactivar el barrido con una pulsación de un botón. p.e. activación de un limpiaparabrisas.

Tutorial: http://arduino.cc/en/Tutorial/Sweep

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio55-Servo/Sweep

Ejercicio avanzado: controlar la posición del servo como en el ejercicio Knob pero en lugar de hacerlo con un potenciómetro, hacerlo desde el puerto serie mandando el ángulo al que debe ir.

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio55-Servo/Knob_Serial

Contador de pulsos

NOTA: para todas estas prácticas, usamos un botón conectado al pin digital 2 configurado como INPUT_PULLUP. En este caso al leer el pin 2 digitalRead(2) me devuelve 1 cuando no está pulsado el botón (abierto) y me devuelve 0 cuando está pulsado el botón (cerrado)

Práctica: Usar la resistencia interna de pull up de Arduino para detectar la pulsación de un botón (leer estado de una entrada digital) y encender el led 13 (integrado en placa) cuando tenga pulsado el botón y apagarlo cuando lo libere. Adicionalmente sacar por el monitor serie el estado de pulsación del botón con un 1 o un 0, de esta forma abriendo el Serial Plotter es posible ver la señal que recibe Arduino.

Tutorial: http://arduino.cc/en/Tutorial/InputPullupSerial

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio08-pullup

NOTA: Ver efecto de la diferencia del tiempo de loop cuando pulso o no pulso el botón debido a el Serial.println que se ejecuta al pulsar el botón. Ver ejercicio https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio08-pullup_tiempo

NOTA: Si el tiempo de loop es muy largo podemos perder pulsaciones rápidas.

Práctica: Modificar el ejemplo anterior pero en lugar de mantener pulsado el botón para encender el led, con una pulsación enciende y con otra apaga el led. Ahora el led ponerlo en el pin 10 en lugar del 13. Detectar flancos para encender y apagar.

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio08-pullup_interruptor

Práctica: Modificar el ejemplo anterior para contar el número de veces que se pulsa un botón detectando flancos ascendentes o descendentes y sacarlo por el monitor serie. Adicionalmente encender o apagar el led cada vez que haya 4 pulsaciones del botón.

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio09-cuentapulsos

Solución a los rebotes

Práctica: Añadir una solución a los rebotes. Los rebotes son las falsas pulsaciones que se producen al hacer falsos contactos en el interruptor.

Más información https://www.arduino.cc/en/Tutorial/Debounce

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio08-pullup_interruptor_rebote

Otra forma de solucionar los rebotes por código: http://miarduinounotieneunblog.blogspot.com.es/2016/01/pulsador-antirrebote-con-contador-de.html

Solucionar rebotes por HW:

Calculadora de valores para debouncing: http://protological.com/debounce-calaculator/

Práctica avanzada: Ver el funcionamiento de la función tone() para generar notas. Tone() genera una onda cuadrada de una frecuencia específica y con un 50% de duty cycle en el pin especificado. La duración del tono puede ser especificado o en caso contrario continúa hasta llamar a la función noTone().

Solo un tono puede ser generado simultáneamente, si un tono ya se está ejecutando en otro pin, la llamada a tone() no tendrá efecto.

Para más información:

NOTA: no confundir tone con PWM. PWM tiene una frecuencia fija de 500Hz, por lo que entre línea verde y verde hay siempre 2ms.

Esquema de conexión:

Tutoriales:

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio10-tone

Musica Star Wars con Arduino: http://miarduinounotieneunblog.blogspot.com.es/2016/01/banda-sonora-de-star-wars-con-un.html

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercio51-Musica_StarWars

Descarga e Instalación de Prácticas

Una vez instalado el el IDE y comprendido como está organizado y su configuración podemos instalar las prácticas que veremos en el curso y verlas en nuestro entorno de trabajo para acceder a ellas más rápidamente.

Todas las prácticas del curso y muchas más se encuentran en https://github.com/jecrespo/Aprendiendo-Arduino

Para usar las prácticas durante el curso y tenerlas disponibles en cualquier momento para cargar en Arduino o simplemente consultar el código, descargar las prácticas desde el enlace https://github.com/jecrespo/Aprendiendo-Arduino/archive/master.zip y descomprimir el archivo en el escritorio o cualquier otra carpeta.

También es posible hacerlo entrando en la página https://github.com/jecrespo/Aprendiendo-Arduino donde se encuentra todo el código relacionado con el curso:

github

Pulsar en “Clone or download”  y descargar pinchando en “Download ZIP”:

github2

Una vez descargado el fichero .zip debemos descomprimir el contenido en la carpeta donde hemos configurado la “Localización de proyecto” en las preferencias del IDE.

Una vez descomprimido el contenido en la carpeta de proyectos que por defecto es C:\Users\nombre_usuario\Documentos\Arduino, vamos a poder ver todas las prácticas y acceder a ellas desde el IDE de Arduino en el menú Archivo → Proyecto → Aprendiendo-Arduino.

acceso prácticas

NOTA: En caso de hacer esta operación con el IDE de Arduino abierto, deberemos reiniciar el IDE para poder ver las prácticas dentro de los proyectos.

Que es git y github

Cuando buscas en internet cualquier cosa sobre programación, software libre o Arduino es muy probable que acabemos en la página de https://github.com/ donde podemos acceder al código fuente.

Cuando trabajamos con Arduino es importante que conozcamos que es github y conocer un poco qué es y cómo hacer ciertas operaciones sencillas con esta web. Para conseguir software y ver el código, no es necesario crearse una cuenta, sólo es necesario cuando vamos a subir nuestro propio código.

GitHub es una plataforma de desarrollo colaborativo para alojar proyectos utilizando el sistema de control de versiones Git. El código se almacena de forma pública, aunque también se puede hacer de forma privada, creando una cuenta de pago.

Git es un software de control de versiones diseñado por Linus Torvalds, pensando en la eficiencia y la confiabilidad del mantenimiento de versiones de aplicaciones cuando éstas tienen un gran número de archivos de código fuente.

Git es uno de los sistemas de control de versiones más populares entre los desarrolladores. Y parte culpa de su popularidad la tiene GitHub, un excelente servicio de alojamiento de repositorios de software con este sistema, que lejos de quedarse en esta funcionalidad, ofrece hoy en día un conjunto de características muy útiles para el trabajo en equipo.

Github es el servicio elegido por proyectos de software libre como jQuery, reddit, Sparkle, curl, Ruby on Rails, node.js, ClickToFlash, Erlang/OTP, CakePHP, Redis, y otros muchos. Además, algunas de las grandes empresas de Internet, como Facebook, alojan ahí sus desarrollos públicos, tales como el SDK, librerías, ejemplos, etc.

GitHub aloja tu repositorio de código y te brinda herramientas muy útiles para el trabajo en equipo, dentro de un proyecto. Además de eso, puedes contribuir a mejorar el software de los demás. Para poder alcanzar esta meta, GitHub provee de funcionalidades para hacer un fork y solicitar pulls.

Realizar un fork es simplemente clonar un repositorio ajeno (genera una copia en tu cuenta), para eliminar algún bug, modificar cosas de él o hacer tu propia versión partiendo un software libre. Una vez realizadas tus modificaciones puedes enviar un pull al dueño del proyecto. Éste podrá analizar los cambios que has realizado fácilmente, y si considera interesante tu contribución, adjuntarlo con el repositorio original.

En github podemos encontrar el código fuente original del ordenador de guía del módulo lunar del apollo 11: https://github.com/chrislgarry/Apollo-11

También podemos encontrar el código fuente de software libre que usamos a diario como el servidor web apache: https://github.com/apache/httpd y por supuesto el del IDE de Arduino https://github.com/arduino/Arduino

Y también grandes compañías como Google o Microsoft publican parte de su código en github: https://github.com/google y https://github.com/Microsoft

Otro ejemplo para el que usaremos github con Arduino es para conseguir las librerías de Arduino que nos sirven para manejar algunos dispositivos o nos facilitan la programación. Los distribuidores de hardware como https://www.sparkfun.com/ tienen su repositorio https://github.com/sparkfun donde podemos descargar las librerías para manejar el hardware que les compramos.

Más información de github en:

Más información de git:

aprendiendoarduino_logo

Presentación del curso

Objetivos

El objetivo de este curso es introducir al alumno en el mundo del hardware libre, los microcontroladores, Internet de las cosas, robótica y el mundo maker y DIY, utilizando la plataforma Arduino.

Al finalizar el curso el alumno será capaz de manejar la plataforma Arduino, conocer su potencial e implementar proyectos de dificultad media. Aprenderá a usar el entorno de programación utilizado por Arduino, el lenguaje de programación, realizar programas y ejecutarlos sobre Arduino.

Otros objetivos de este curso son: conocer los componentes de hardware para recibir señales externas (sensores) y controlar elementos que le rodean para interactuar con el mundo físico (actuadores).

Requisitos

Este curso parte desde cero, por lo que no son necesarios unos conocimientos previos, pero sí son recomendables conocimientos básicos de programación (especialmente C++), electricidad y electrónica.

Es recomendable un conocimiento medio de Inglés puesto que gran parte de la documentación está en Inglés.

Metodología

El curso se compone de una combinación de teoría y práctica que establecen las bases necesarias para entender la plataforma Hardware y Software de Arduino, con una duración de 30 horas. También se realizarán proyectos más complejos al final del curso donde se pondrán en práctica los conocimientos y habilidades adquiridas.

Los recursos utilizados para la realización de este curso son:

Además están disponibles otros recursos para ampliar información:

Para interactuar en el curso se puede hacer mediante:

  • twitter con el hashtag #aprendiendoarduino
  • el blog poniendo comentarios en los post con la documentación del curso
  • correo a aprendiendoarduino@gmail.com

Para realizar las prácticas de este curso se incluye un Arduino Starter Kit (https://www.arduino.cc/en/Main/ArduinoStarterKit) que contiene un Arduino Uno, una serie de sensores y actuadores y diversos elementos electrónicos necesarios para realizar las prácticas y proyectos.

La documentación será toda on line con el objetivo de mantenerla actualizada y no con un documento físico que se queda obsoleto al día siguiente. Además la documentación irá creciendo durante el curso y después de finalizar el curso seguirá estando disponible para todos. La documentación principal se encuentra en http://www.aprendiendoarduino.com/, esto permite acceder a una documentación actualizada en todo momento y a los recursos con un solo clic.

El repositorio de código del curso en github está en http://github.com/jecrespo y aumenta continuamente con los nuevos ejemplos y prácticas que se van subiendo. Las prácticas se realizarán con el Arduino Starter Kit y usaremos el libro como base para las primeras prácticas como referencia y proponiendose más ejemplos.

Todo el material entregado es en préstamo y debe cuidarse al máximo, a la hora del montaje de las prácticas se seguirán las instrucciones para evitar dañar los componentes.

Toda la documentación está liberada con licencia Creative Commons.

Reconocimiento – NoComercial – CompartirIgual (by-nc-sa): No se permite un uso comercial de la obra original ni de las posibles obras derivadas, la distribución de las cuales se debe hacer con una licencia igual a la que regula la obra original.

Aprendiendo Arduino by Enrique Crespo is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.

Organización del curso

Duración total de 30 horas. El curso se celebra del 5 al 16 de septiembre de 2016 de Lunes a Viernes en horario de 17.00 a 20.00. Se hará un descanso de 10 minutos aproximadamente a mitad de la sesión antes de empezar con la parte práctica.

Capítulos del curso:

  • Hardware Arduino
  • Software Arduino
  • Programación Arduino
  • Manejo Arduino
  • Comunicaciones IP Arduino
  • Proyectos Arduino

Detalle del temario: http://www.aprendiendoarduino.com/curso-arduino-2016-s-e/

Programación diaria del curso:

Cada día de curso de compone de 4 partes diferenciadas:

  • Saber más: Al principio de la clase se verán durante 10-15 minutos temas relacionados con Arduino propuestos por los alumnos o que hayan surgido anteriormente.
  • Primera parte: Contenidos más teóricos
  • Práctica: Después del descanso se practicará con Arduino
  • Opcional: Si da tiempo se verán contenidos adicionales

Como Empezar con Arduino

Para empezar con Arduino debes preguntarte qué sabes de electrónica y qué sabes de programación. Si no sabes de electrónica, es difícil entender cómo funcionan los elementos con los que va a interactuar la placa Arduino y si no sabes de programación no va a ser posible traducir las órdenes que deseas hacer a la electrónica para que las ejecute Arduino.

Para empezar con Arduino hay que aprender electrónica y a programar y eso es lo que vamos a aprender en este curso entre otras cosas.

Artículos de como empezar con Arduino:

Aclaraciones sobre el curso

Arduino es una plataforma ampliamente usada por aficionados (makers) y para prototipado y puede verse como un “juguete”, pero en este curso vamos a aprender a programarlo y usarlo para implantarlo en cualquier aplicación que necesitemos tanto para un uso profesional como personal/aficionado. La principal ventaja de usar una plataforma de este tipo es el rápido despliegue de una nueva aplicación y la facilidad de programación.

Arduino se trata principalmente como una herramienta para prototipado y usada en el mundo del hobby, pero aquí vamos a ir más allá y lo trataremos como una herramienta profesional que puede abarcar multitud de sectores.

A lo largo del curso se van a ver muchos conceptos de diferentes tecnologías que a priori no tienen nada que ver entre ellos: electronica digital y analogica, electricidad, programación, microcontroladores, tratamiento de señales, bases de datos, protocolos de comunicación, arquitectura de procesadores, mecánica, motores, diseño de placas electrónicas etc…

En unos casos se profundizará más y en otros menos, pero sin ponerse demasiado académico, de hecho la filosofía con la que nació  arduino es facilitar las cosas, lo que ocurre es que cuando las necesidades crecen, la programación de un microcontrolador se hace más compleja y hay que profundizar en la teoría.

Hay conceptos muy importantes a aprender y avisaré de ello y luego otros conceptos que daré las nociones y las herramientas para que quien lo necesite amplíe su conocimiento.

Este curso es totalmente dinámico y cualquier inquietud o necesidad que se tenga de un aspecto en concreto de Arduino se puede incluir en el curso.

Existe mucha documentación sobre Arduino en Internet, pero eso es un problema y a veces está desordenado o es demasiado básico, así que una parte de mi trabajo es recopilar la información más interesante, ordenarla y estructurarla.

No se va a seguir el índice en el orden que está en la documentación, sino que se van a mezclar los capítulos para ser más pedagógico. Cada día del curso se publicará un post donde se va explicar que se va a ver y un enlace a la documentación de los capítulos. Se va mezclar la práctica con la teoría para que sea el curso ameno.

Presentaciones

Arduino tiene muchos ámbitos de aplicación, desde el sector agrícola, fabricación, eficiencia energética, robótica, monitorización, educación, etc… Para que entorno tienes pensado usar Arduino?

  • Como conoces Arduino?
  • Motivaciones para aprender a usar Arduino?
  • Qué sabes de electrónica?
  • Qué sabes de programación?
  • Algún proyecto o entorno de aplicación donde usar Arduino?

Contacto

Para cualquier consulta durante el curso y en cualquier otro momento mediante email: aprendiendoarduino@gmail.com

Twitter @jecrespo: https://twitter.com/jecrespom

Y más información sobre el curso y el autor: http://www.aprendiendoarduino.com/acerca-de/