Archivo por meses: julio 2016

Smoothing

Ejercicio: Leer un voltaje analógico y sacarlo por consola. Conectar un potenciómetro en la entrada analógica A0, leer su valor e iluminar el LED en función del valor leído.

Tutoriales:

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio11-Analog

Ejercicio Smoothing: Leer una entrada analógica llegada de un potenciómetro y sacar por el puerto serie la media de los últimas 10 lecturas. Luego hacer una transición más suave al escribir en el puerto analógico.

Para los más avanzados mezclar con la práctica de dimmer para que saque el valor más alisado a un LED y gradualmente.

Tutorial: https://www.arduino.cc/en/Tutorial/Smoothing

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio12-Smoothing

Ejercicio Avanzado: Hacer una versión del coche fantástico pero usando el smoothing para que haya un led encendido al 100% y los de al lado al 50% y los siguientes al 25%.

Entradas y salidas analógicas. PWM

Una señal eléctrica analógica es aquella en la que los valores de la tensión o voltaje varían constantemente y pueden tomar cualquier valor. En el caso de la corriente alterna, la señal analógica incrementa su valor con signo eléctrico positivo (+) durante medio ciclo y disminuye a continuación con signo eléctrico negativo (–) en el medio ciclo siguiente.

Un sistema de control (como un microcontrolador) no tiene capacidad alguna para trabajar con señales analógicas, de modo que necesita convertir las señales analógicas en señales digitales para poder trabajar con ellas.

La señal digital obtenida de una analógica tiene dos propiedades fundamentales:

En el caso de un arduino Uno, el valor de 0 voltios analógico es expresado en digital como B0000000000 (0) y el valor de 5V analógico es expresado en digital como B1111111111 (1023). Por lo tanto todo valor analógico intermedio es expresado con un valor entre 0 y 1023, es decir, sumo 1 en binario cada 4,883 mV.

Arduino Uno tiene una resolución de 10 bits, es decir, unos valores entre 0 y 1023.

Arduino Due tiene una resolución de 12 bits, es decir, unos valores entre 0 y 4095.

Diferencia entre señales analógicas y digitales:

PWM

Como hemos dicho Arduino Uno tiene entradas analógicas que gracias a los conversores analógico digital puede entender ese valor el microcontrolador, pero no tiene salidas analógicas puras y para solucionar esto, usa la técnica de PWM.

Las Salidas PWM (Pulse Width Modulation) permiten generar salidas analógicas desde pines digitales. Arduino Uno no posee salidas analógicas puras.

El arduino due, posee dos salidas analógicas puras mediante dos conversores digital a analógico. Estos pines pueden usarse para crear salidas de audio usando la librería correspondiente.

La modulación por ancho de pulsos (también conocida como PWM, siglas en inglés de pulse-width modulation) de una señal o fuente de energía es una técnica en la que se modifica el ciclo de trabajo de una señal periódica (una senoidal o una cuadrada, por ejemplo), ya sea para transmitir información a través de un canal de comunicaciones o para controlar la cantidad de energía que se envía a una carga.

El ciclo de trabajo de una señal periódica es el ancho relativo de su parte positiva en relación con el período. duty cycle = (tiempo que la salida está a uno o HIGH)/ (periodo de la función)

 

En este ejemplo se ve cómo simular con PWM una onda sinusoidal analógica.

En Arduino la frecuencia de PWM es de 500Hz. Pero es un valor que puede modificarse en caso que lo necesitemos.

En la actualidad existen muchos circuitos integrados en los que se implementa la modulación PWM, por ejemplo para lograr circuitos funcionales que puedan controlar fuentes conmutadas, controles de motores, controles de elementos termoeléctricos, choppers para sensores en ambientes ruidosos y algunas otras aplicaciones.

Definición de PWM en la web de Arduino: http://arduino.cc/en/Tutorial/PWM

No confundir PWM con la función tone() que es utilizada para generar una onda cuadrada de ciclo de trabajo 50% y frecuencia variable, con el fin de emitir sonidos audibles, modificando la frecuencia.

Más información de tone() en:

https://code.google.com/p/rogue-code/wiki/ToneLibraryDocumentation

Para ampliar un poco más de información sobre PWM ver: http://rufianenlared.com/que-es-pwm/

Conversor analógico digital (ADC)

Un microcontrolador solo entiende señales digitales (1’s y 0’s), por lo tanto para poder leer señales analógicas necesitamos los convertidores Analógico a Digital (ADC).

Cómo funciona un conversor analógico a digital:

Conversor digital  analógico (DAC)

Definición: http://en.wikipedia.org/wiki/Digital-to-analog_converter

Al contrario que las señales analógicas, las señales digitales se pueden almacenar y transmitir sin degradación. Los DAC se usan para los altavoces, amplificadores para producir sonido. Ejemplo de la transmisión de la voz por la líneas telefónicas.

Entradas analógicas en Arduino

Los microcontroladores de Arduino contienen en la placa un conversor analógico a digital de 6 canales. El conversor tiene una resolución de 10 bits, devolviendo enteros entre 0 y 1023. Los pines analógicos de Arduino también tienen todas las funcionalidades de los pines digitales. Por lo tanto, si necesitamos más pines digitales podemos usar los pines analógicos. La nomenclatura para los pines analógicos es A0, A1, etc…

En arduino los pines analógicos se definen y tienen las propiedades siguientes: http://arduino.cc/en/Tutorial/AnalogInputPins

En arduino para tratar las entradas y salidas digitales usamos las siguientes funciones:

Otras funciones interesantes con entradas/salidas analóicas:

Contador de pulsos

Práctica: Usar la resistencia interna de pull up de Arduino para detectar la pulsación de un botón (leer estado de una entrada digital) y encender un led cuando tenga pulsado el botón. Adicionalmente sacar por el monitor serie el estado de pulsación del botón

Tutorial: http://arduino.cc/en/Tutorial/InputPullupSerial

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio08-pullup

Práctica: Modificar el ejemplo anterior para contar el número de veces que se pulsa un botón detectando flancos ascendentes o descendentes y sacarlo por el monitor serie. Adicionalmente encender o apagar el led cada vez que haya 4 pulsaciones del botón.

Tutorial: http://arduino.cc/en/Tutorial/ButtonStateChange

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio09-cuentapulsos

Añadir una solución a los rebotes que se dan con el código del ejercicio 9.

Solución a los rebotes: http://miarduinounotieneunblog.blogspot.com.es/2016/01/pulsador-antirrebote-con-contador-de.html o via HW con un condensador.

Práctica avanzada: Ver el funcionamiento de la función tone() para generar notas. Tone() genera una onda cuadrada de una frecuencia específica y con un 50% de duty cycle en el pin especificado. La duración del tono puede ser especificado o en caso contrario continúa hasta llamar a la función noTone().

Solo un tono puede ser generado simultáneamente, si un tono ya se está ejecutando en otro pin, la llamada a tone() no tendrá efecto.

Para más información:

NOTA: no confundir tone con PWM. PWM tiene una frecuencia fija de 500Hz, por lo que entre línea verde y verde hay siempre 2ms.

Esquema de conexión:

Tutoriales:

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio10-tone

Entradas y salidas Digitales

Una señal digital es un tipo de señal generada por algún tipo de fenómeno electromagnético en que cada signo que codifica el contenido de la misma puede ser analizado en término de algunas magnitudes que representan valores discretos, en lugar de valores dentro de un cierto rango. Por ejemplo, el interruptor de la luz sólo puede tomar dos valores o estados: abierto o cerrado, o la misma lámpara: encendida o apagada.

Más información:

Los sistemas digitales, como por ejemplo un microcontrolador, usan la lógica de dos estados representados por dos niveles de tensión eléctrica, uno alto, H y otro bajo, L (de High y Low, respectivamente, en inglés). Por abstracción, dichos estados se sustituyen por ceros y unos, lo que facilita la aplicación de la lógica y la aritmética binaria. Si el nivel alto se representa por 1 y el bajo por 0, se habla de lógica positiva y en caso contrario de lógica negativa.

Cabe mencionar que, además de los niveles, en una señal digital están las transiciones de alto a bajo y de bajo a alto, denominadas flanco de bajada y de subida, respectivamente.

En una señal digital, se denomina flanco a la transición del nivel bajo al alto (flanco de subida) o del nivel alto al bajo (flanco de bajada).

En la siguiente imagen el flanco de bajada es detectado por el retardo que realiza la compuerta not así cuando a la entrada haya un uno, las dos entradas de la or negada serán uno y cero, por tanto la salida será de cero, pero en el momento en que la entrada sea de cero la conexión directa que hay a la or negada nos dará un cero inmediato en una de sus entradas, mientras que por el retardo que presenta la not también tendremos un cero y esto nos generará un uno a la salida por unos momentos, o sea la detección del flanco de bajada.

Características de las Señales Digitales

Flanco vs Pulso

Periodo, ancho de pulso, flancos

Tipos de señales digitales

  • Discreta: puede tomar un conjunto de valores
  • Binaria: Encendido (1) – Apagado (0)

Tecnologías de construcción

Arduino trabaja con tecnología TTL (transistor-transistor logic):

http://es.wikipedia.org/wiki/Tecnolog%C3%ADa_TTL

Características

  • Su tensión de alimentación característica se halla comprendida entre los 4,75V y los 5,25V. Normalmente TTL trabaja con 5V.
  • Los niveles lógicos vienen definidos por el rango de tensión comprendida entre 0,0V y 0,8V para el estado L (bajo) y los 2,4V y Vcc para el estado H (alto).
  • La velocidad de transmisión entre los estados lógicos es su mejor base, si bien esta característica le hace aumentar su consumo siendo su mayor enemigo. Motivo por el cual han aparecido diferentes versiones de TTL como FAST, LS, S, etc y últimamente los CMOS: HC, HCT y HCTLS. En algunos casos puede alcanzar poco más de los 250 MHz.
  • Las señales de salida TTL se degradan rápidamente si no se transmiten a través de circuitos adicionales de transmisión (no pueden viajar más de 2 m por cable sin graves pérdidas).

Tecnología CMOS: https://es.wikipedia.org/wiki/Semiconductor_complementario_de_%C3%B3xido_met%C3%A1lico

Comparación TTL y CMOS: http://digital.ni.com/public.nsf/allkb/2D038D3AE1C35011862565A8005C5C63

Los nuevos arduinos basados en procesadores ARM de 32 bits, usan tecnología TTL a 3.3V

Entradas y Salidas Digitales en Arduino

En arduino los pines digitales se describen y tienen la propiedades siguientes:  http://arduino.cc/en/Tutorial/DigitalPins

En arduino para tratar las entradas y salidas digitales usamos las siguientes funciones:

En la imagen siguiente se muestra el estado por defecto de una I/O digital en un microcontrolador de Arduino. Se ha simplificado con interruptores la compleja electrónica que hay dentro. Por defecto los digital I/O pins están configurados como inputs en un estado de alta impedancia (equivalente a una resistencia de 100 Mohms en frente del pin), es decir, SW3 a ON y no hace falta llamar a la función pinMode() aunque es recomendable para aclarar el código.

  • PinMode(x, INPUT) –> SW3 = ON (resto a OFF). Los valores leídos serán aleatorios si el pin de Arduino está al aire. El pin está en un estado de alta impedancia (resistencia de 100 Mohms).
  • PinMode(x,INPUT_PULLUP) –> SW3 = ON & SW4 = ON (resto a OFF). Los valores leídos sin nada conectado al pin es HIGH. La Resistencia R1 tiene un valor dependiendo del microcontrolador, pero tiene un valor entre 20kOhm y 150kOhm.
  • PinMode(x, OUTPUT) & digitalWrite(x,HIGH) –> SW2 = ON & SW1 = +5V (resto a OFF). Estado de baja impedancia, no hay resistencia interna y es necesario poner una resistencia adecuada a la salida el pin para no superar los 40mA (source) máximos admitidos
  • PinMode(x, OUTPUT) & digitalWrite(x,LOW) –> SW2 = ON & SW1 = GND (resto a OFF). Estado de baja impedancia, no hay resistencia interna y es necesario poner una adecuada para no superar los 40mA (sink) máximos admitidos

En el caso que el pin esté configurado como OUTPUT, hay diferencia entre sink (recogida de corriente) y source (fuente de corriente) de un pin digital configurado como salida.

En el primer caso para encender el LED debo poner digitalWrite() a HIGH y en el segundo a LOW

 

En el caso que el pin de entrada esté configurado como INPUT. Cuando el botón no está pulsado, en el primer caso leo digitalRead() un valor HIGH y en el segundo LOW y cuando pulso el botón, en el primer caso leo digitalRead() un valor LOW y en el segundo HIGH. Como véis, dependiendo de la configuración de lo conectado cambia lo leído. Estas configuraciones se denominan resistencias de pull up y resistencia de pull down respectivamente.

 

En el caso que el pin de entrada configurado como INPUT_PULLUP. Si el botón no está pulsado leo HIGH (no se producen lecturas aleatorias con el pin al aire) y cuando pulso el botón leo LOW. Esta es la mejor forma de leer entradas digitales sin necesidad de poner elementos externos a Arduino.

Más información sobre como usar las internal pullups: https://www.baldengineer.com/arduino-pull-ups.html

Chat Serie

Hacer un programa que comunique por puerto serie un arduino UNO (usar la librería software serial) con otro Arduino UNO y saque por pantalla (puerto serie HW del USB) lo recibido por el puerto serie SW y mande por el puerto serie SW todo aquello que mandes desde el terminal. Es decir, hacer un chat punto a punto entre dos Arduinos.

Funciones y librerías a usar:

Preguntas:

  • Leer el código de la librería Softwareserial ¿Que tamaño de buffer tiene?. La librería está en la ruta “C:\Program Files (x86)\Arduino\hardware\arduino\avr\libraries”

Solución básica: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio22-ChatSerie

Hacer una versión mejorada del anterior chat, de forma que al escribir en el monitor serie la cadena “repite”, Arduino pregunte cuantas veces y mandar por el chat serie la cadena “repite” tantas veces como se haya indicado. En este caso la estrategia es diferente, en lugar de leer un carácter del buffer en cada loop, en este caso hay que leer todo el buffer en el mismo loop para analizar lo que he recibido. Otra estrategia sería leer en cada loop línea por línea.

Comprobar las luces de Tx, Rx cada vez que se manda o recibe datos. Se podría hacer lo mismo con unos LEDs en los pines 10 y 11, encendiendo los leds cada vez que hagamos un write() o un read() en el puerto serie software y veríamos si se están mandando datos o no por la comunicación serie entre los dos Arduinos.

Solución: https://github.com/jecrespo/Aprendiendo-Arduino/tree/master/Ejercicio22-ChatSerieMejorado