Archivo de la categoría: IDE

Video 2. Instalación IDE Arduino

Que es el IDE de Arduino

IDE – entorno de desarrollo integrado, llamado IDE (sigla en inglés de integrated development environment), es un programa informático compuesto por un conjunto de herramientas de programación. Puede dedicarse en exclusiva a un solo lenguaje de programación o bien puede utilizarse para varios.

Un IDE es un entorno de programación que ha sido empaquetado como un programa de aplicación; es decir, que consiste en un editor de código, un compilador, un depurador y un constructor de interfaz gráfica (GUI). Además en el caso de Arduino incorpora las herramientas para cargar el programa ya compilado en la memoria flash del hardware.

Los programas de arduino están compuestos por un solo fichero con extensión “ino”, aunque es posible organizarlo en varios ficheros. El fichero principal siempre debe estar en una carpeta con el mismo nombre que el fichero.

Todos lo cambios en la versiones pueden verse en: https://www.arduino.cc/en/Main/ReleaseNotes

Una guía de como migrar de versiones anteriores a la 1.0: http://www.engblaze.com/changes-in-the-arduino-1-0-release/

Instalar el IDE de Arduino

Descargar la última versión del IDE de Arduino desde: http://arduino.cc/en/Main/Software

Para instalar en windows seguir: https://aprendiendoarduino.wordpress.com/2016/06/26/instalacion-software-y-configuracion/

El IDE de Arduino es multiplataforma y en caso de instalar el IDE Arduino en otros sistemas operativos estas son las instrucciones:

Actualizar el IDE de Arduino

A la hora de actualizar, el instalador de Arduino lo que hace es borrar toda la ruta completa donde hemos instalado Arduino e instala la nueva versión. Por lo tanto cualquier modificación o librería instalada en el directorio de instalación se perderá en la actualización.

Es importante que cualquier sketch que hagamos y cualquier librería que instalemos se haga en la ruta indicada en las propiedades, de esta forma lo mantendremos al actualizar el IDE.

IDE Arduino y Configuración

Entorno de programación

El entorno de desarrollo integrado también llamado IDE (sigla en inglés de Integrated Development Environment), es un programa informático compuesto por un conjunto de herramientas de programación. Puede dedicarse en exclusiva a un solo lenguaje de programación o bien puede utilizarse para varios lenguajes.

Un IDE es un entorno de programación que ha sido empaquetado como un programa de aplicación; es decir, que consiste en un editor de código, un compilador, un depurador y un constructor de interfaz gráfica (GUI). Además en el caso de Arduino incorpora las herramientas para cargar el programa ya compilado en la memoria flash del hardware.

El IDE de Arduino va a ser la herramienta de trabajo durante el curso y habrá que conocer su funcionamiento.

Los programas de arduino están compuestos por un solo fichero con extensión “ino”, aunque es posible organizarlo en varios ficheros. El fichero principal siempre debe estar en una carpeta con el mismo nombre que el fichero.

Anteriormente a la versión 1.x de Arduino se usaba la extensión “pde”. Cuando se pasó a la versión 1.x hubo grandes cambios, que deben tenerse en cuenta si se usa el código antiguo. Guía de como migrar de versiones anteriores a la 1.0: http://www.engblaze.com/changes-in-the-arduino-1-0-release/

La última versión del IDE de Arduino es la 1.8.5. Los grandes cambios en el IDE Arduino se han producido desde la actualización de la versión 0.22 a la 1.0 y posteriormente la actualización de la versión 1.0.6 a la 1.6.0 que han supuesto importantes mejoras en el IDE de Arduino.

El el caso de la versión 1.6.0 los cambios han sido principalmente internos más que en el aspecto de la herramienta. También es destacable desde la aparición de la versión 1.6.2 la incorporación de la gestión de librerías y la gestión de placas muy mejoradas respecto a la versión anterior y los avisos de actualización de versiones de librerías y cores.

Todos lo cambios en la versiones pueden verse en: https://www.arduino.cc/en/Main/ReleaseNotes

Código fuente del IDE de Arduino está disponible en: https://github.com/arduino/Arduino/  y las instrucciones para construir el IDE desde código fuente pueden verse en: https://github.com/arduino/Arduino/wiki/Building-Arduino

Podemos también ver los problemas/bugs detectados de la versión actual y hacer un seguimiento de ellos: https://github.com/arduino/Arduino/issues y en http://forum.arduino.cc/index.php?board=2.0

Conozcamos el IDE, nuestro entorno de trabajo:

IMPORTANTE: Para conocer el entorno de programación a fondo ver: http://arduino.cc/en/Guide/Environment

Es importante conocer cada uno de los menús y opciones que tiene, pero los más importantes por ahora son:

  • Botones de Verificar y Subir
  • Botón Monitor Serie
  • Consola de Error
  • Menú herramientas Placa y Puerto
  • Menú de pestañas
  • Puerto y placa seleccionada
  • Menú preferencias
  • Proyecto/Sketch

Configuración inicial del IDE

Después de la instalación, lo primero es configurar el IDE para facilitar la edición de nuestros programas, que nos muestre toda la información de compilación y subida de programas a Arduino y que nos muestre por pantalla todos los warnings del compilador. Cuanta más información tengamos, más fácil será localizar un problema.

Para ello, entrar en el menú Archivo → preferencias y activar:

  • Números de Línea
  • Mostrar salida detallada en la compilación y al subir un sketch
  • Configurar la ruta de nuestro workspace
  • Advertencia del compilador: Todos
  • Asociar extensión .ino a nuestro IDE
  • Habilitar plegado de código
  • Verificar el código después de subir

Desde esta pantalla configuramos donde se guardan las preferencias, sketches y librerías, de forma que al instalar una actualización mantenemos todos los datos o si instalamos varios IDEs van a compartir estos datos.

  • Los sketches y librerías se guardan en C:\Users\nombre_usuario\Documentos\Arduino
  • Las preferencias se guardan en el directorio: C:\Users\nombre_usuario\AppData\Local\Arduino15\, aquí también está el listado de librerías y placas disponibles desde el gestor de librerías y tarjetas.

NOTA: Guardar en el directorio de “Localización de Proyecto” la carpeta con las prácticas, de esta manera estarán disponibles directamente desde el IDE de Arduino.

Cargar un Programa en Arduino

El IDE de Arduino contiene un editor de texto para escribir nuestro sketch, una consola de error y un área con los menús y los botones que realizan las funciones más comunes como son abrir sketch, guardar sketch, compilar y cargar programa.

A la hora de cargar un programa en Arduino, debemos seleccionar siempre el modelo de la placa conectada y el puerto al que está conectado.

Una vez seleccionada la placa y el puerto ya podemos pulsar sobre el botón subir y comenzará el proceso de compilación y carga del programa a la placa Arduino.

Cuando cargamos un programa en Arduino, estamos usando el bootloader de Arduino, que es un pequeño programa cargado en el microcontrolador que permite subir el código sin usar hardware adicional. El bootloader está activo unos segundos cuando se resetea la placa, después comienza el programa que tenga cargado el Arduino en su memoria Flash. El led integrado en la placa (pin 13) parpadea cuando el bootloader se ejecuta.

Práctica: Probar a cargar el programa blink en Arduino y comprobar que parpadea el led integrado en la placa. De esta forma comprobamos que hemos instalado todo correctamente.

Gestor de Tarjetas

El gestor de tarjetas está disponible desde el menú herramientas → Placa → Gestor de tarjetas, nos muestra el soporte a qué tipo de placas tenemos y permite instalar otro tipo de placas. Estas placas se refieren a la familia de tarjetas no a los modelos de Arduino soportados, eso se debe configurar desde otro fichero.

Por defecto tenemos instalado el soporte a las placas Arduino AVR que son la mayoría, pero nos permite instalar el soporte para los Arduino con MCU ARM de 32 bits como el Arduino MKR1000 o las Intel como el Arduino 101.

En este enlace explica como instalar nuevos cores: https://www.arduino.cc/en/Guide/Cores

Cuando tengamos algún problema, la primera opción es recurrir a la guía de Troubleshooting: http://arduino.cc/en/Guide/Troubleshooting

Gestor de Librerías

El gestor de librerías accesible desde menú > Programa > Incluir Librería > Gestionar Librerías

Este gestor nos permite instalar, desinstalar y actualizar las librerías que tenemos disponibles en el IDE.

Monitor serie

El monitor serie es una de las partes más importantes del IDE de Arduino porque es nuestra ventana para la comunicación entre Arduino y el ordenador, que se hace a través del cable USB.

El monitor serie muestra los datos enviados por el Arduino a través del puerto serie también nos permite mandar datos al Arduino mediante el puerto serie.

Hay disponibles alternativas al monitor serie que en algunas circunstancias podemos necesitar puesto que el incluido en el IDE de Arduino es bastante sencillo, pero generalmente suficiente.

Una buena alternativa muy completa es el btaru terminal: https://sites.google.com/site/terminalbpp/

Arduino Serial Plotter. Desde la versión 1.6.6 del IDE de Arduino disponemos de la herramienta Arduino Serial Plotter que nos permite hacer gráficas de los datos mandados por puerto serie.

Práctica: Cargar el programa “AnalogReadSerial” dentro de los ejemplos, apartado 01.Basics y ver lo que saca por el monitor serie y por el Serial Plotter.

IDE Online

Arduino.cc ha sacado un IDE on-line llamado Arduino Web Editor que puede usarse en lugar del IDE que acabamos de ver. Este IDE on-line está dentro del proyecto Arduino Create accesible desde https://create.arduino.cc/ y incluye varios apartados.

Para usar este IDE es necesario instalar un plugin y mediante este wizard online es posible instalarlo: https://create.arduino.cc/getting-started/plugin

También es importante señalar que es necesario crearse una cuenta de arduino.cc para poder usar este IDE on-line.

Getting started con Arduino Web Editor: https://create.arduino.cc/projecthub/Arduino_Genuino/getting-started-with-the-arduino-web-editor-4b3e4a

En estas publicaciones del blog de arduino.cc habla de Arduino Create:

Con Arduino Web Editor es posible escribir y cargar sketchs a cualquier placa Arduino directamente desde el navegador, guardar todos los sketches en el Arduino Cloud y acceder a ellos desde cualquier dispositivo.

El nuevo IDE de Arduino Web está siempre actualizado, incluyendo las últimas librerías y cores de las placas sin tener que instalar nada. Las placas conectadas al ordenador aparecen automáticamente en un desplegable.

Los ejemplos están disponible con los esquemáticos de conexión y también permite subir tus sketches con el esquemático y diagrama eléctrico, de forma que está todo en un mismo lugar.

Para poder usarlo es necesario descargar un plug-in en función del sistema operativo (Windows/Linux/Mac OS).  El código fuente y los binarios de este plugin están en: https://github.com/arduino/arduino-create-agent

Este plugin (agente) detecta automáticamente los puertos USB de nuestro ordenador y detecta cualquier placa Arduino conectada, si estamos cargando un sketch o si estamos usando el monitor serie.

Este plugin está basado en el serial-port-json-server de johnlauer: https://github.com/johnlauer/serial-port-json-server que permite comunicarte con el puerto serie de un ordenador desde un navegador. Esto permite hacer aplicaciones web que se pueden comunicar con el puerto serie local. Más información y ejemplo en: http://chilipeppr.com/

Esto no es una sustitución del IDE tradicional, sino un complemento para quien no quiera instalarse el IDE. Arduino.cc ha mostrado su intención de dar siempre a la comunidad un IDE off-line, aunque actualmente están fomentado el uso del IDE online.

Instalación Software Arduino

Antes de empezar a usar el hardware de Arduino, vamos a conocer el software de Arduino, dejarlo instalado y configurado para poder empezar a trabajar.

Desinstalación del Software Arduino y Configuraciones

NOTA: Esto es para el buen desarrollo del curso Arduino, si haces esto en tu ordenador de casa perderás los sketches que tengas en el espacio de trabajo de Arduino, las librerías instaladas y las configuraciones personalizadas del IDE. NO LO HAGAS ESTAS OPERACIONES DE DESINSTALACIÓN SI NO ESTAS SEGURO y sigue con la instalación del software de Arduino en el siguiente párrafo.

Para tener una instalación limpia y que no haya problemas en la realización de las prácticas del curso de Arduino hacer los siguientes pasos:

  • Ver los directorios de configuración del software de Arduino, para ello entrar en el menú Archivo → preferencias

  • Desinstala (si está instalado) el software de Arduino desde el Panel de Control de Windows. Asegurate que dentro del directorio “C:\Program Files (x86)\Arduino\” no queda nada dentro o sino borralo.
  • Borra (si existe) la carpeta y todo su contenido de Localización de Proyecto que estaba en propiedades. Generalmente será: “C:\Users\ThinkTIC\Documents\Arduino”. Esto borra los sketches guardados y las librerías instaladas.
  • Borra (si existe) la carpeta y su contenido de preferencias que estaba en propiedades. Generalmente será: “C:\Users\ThinkTIC\AppData\Local\Arduino15”. Esto borra las preferencias del software de Arduino y el soporte a placas instalado.

Ahora ya tenemos limpio de datos de la anterior instalación del software de Arduino y podemos empezar con una instalación limpia desde cero.

Instalación del Software Arduino

Vamos a instalar la última versión del IDE de Arduino, conocer el entorno de programación y hacer las principales configuraciones en el entorno para poder trabajar de forma más eficiente.

Descargar la última versión del IDE de Arduino desde: http://arduino.cc/en/Main/Software.

El IDE de Arduino también está disponible en la web de http://www.arduino.org/downloads y es el mismo IDE que podemos encontrar en https://www.arduino.cc/en/Main/Software pero es recomendable hacerlo desde la página principal www.arduino.cc  

Arduino.org es la web de la división de Arduino encargada de fabricar las placas, en su momento hubo una ruptura de relación en dos Arduinos, pero que actualmente son entidades diferentes trabajando de forma conjunta desde el 1 de octubre de 2016. Más información: https://blog.arduino.cc/2016/10/01/two-arduinos-become-one-2/

Nota: Si quieres saber más de la historio de esta división, puedes leer https://aprendiendoarduino.wordpress.com/2016/03/19/arduino-cc-y-arduino-org-los-dos-arduinos/.

Elegir la opción de Windows Installer, aunque también es posible descargar la versión comprimida en zip, que es una versión portable o para aquellos que no tengan privilegios suficientes para instalar aplicaciones o simplemente quien quiera hacer una instalación manual. En caso de descargar la versión comprimida en zip, simplemente descomprimirlo en la carpeta deseada y ya podemos usarlo.

Una vez descargado, ejecutar el instalador. Si existe una versión anterior el instalador nos avisa y nos desinstala la versión actual. En el caso que hayamos hecho modificaciones en el directorio de instalación las perderemos.

Ya en la instalación aceptamos el acuerdo de licencia.

Marcar todas las opciones y elegir directorio de instalación, generalmente C:\Program Files (x86)\Arduino\:

Permitir instalar los drivers si lo solicita:

Y ya está instalado:

En este momento ya tenemos instalado el IDE en nuestro ordenador.

Ejecutar la aplicación:

Y este es el aspecto del IDE:

Las novedades de la nueva versión del IDE:

  • Soporte multiplataforma de arduino
  • Detección automática de la placa conectada
  • Muestra memoria Flash y SRAM ocupada por un sketch o proyecto
  • Autoguardado al compilar y cargar sketch
  • Carga de sketch vía red (wifi o ethernet) para Arduino Yun.

El IDE de Arduino es multiplataforma y en caso de instalar el IDE Arduino en otros sistemas operativos estas son las instrucciones:

Recientemente se ha liberado una versión del IDE para dispositivos Linux con HW basados en ARM como Raspberry Pi: http://hackaday.com/2016/04/12/arduino-comes-to-the-raspberry-pi-linux-arm-devices/ y otra versión como app de windows: https://www.microsoft.com/es-es/store/p/arduino-ide/9nblggh4rsd8

NOTA: para usuarios de linux/debian, el IDE Arduino está en los repositorios oficiales, pero instalará una versión antigua del IDE. Por lo tanto aunque funcione “apt-get install arduino “, es recomendable hacer la instalación según https://www.arduino.cc/en/Guide/Linux. Para ver qué versión se instalará desde el repositorio oficial usar el comando “apt-cache showpkg arduino”

Actualizar el IDE de Arduino

Para actualizar una versión anterior del IDE de Arduino, el procedimiento es el mismo que el de una instalación inicial, puesto que el instalador detecta una versión anterior y la desinstala manteniendo todas nuestras configuraciones, librerías y sketches anteriores.

En caso que queramos mantener varias versiones del IDE en el mismo ordenador, simplemente hacemos la instalación manual en directorios diferentes y las configuraciones, librerías y sketches son compartidas por las diferentes versiones del IDE instaladas.

A la hora de actualizar, el instalador de Arduino lo que hace es borrar toda la ruta completa donde hemos instalado Arduino e instala la nueva versión. Por lo tanto cualquier modificación o librería instalada en el directorio de instalación se perderá en la actualización.

Es importante que cualquier sketch que hagamos y cualquier librería que instalemos se haga en la ruta indicada en las propiedades, de esta forma mantendremos nuestra configuración al actualizar el IDE.

Arduino Intel Edison + Intel IoT Analytics

Este artículo está motivado por mi asistencia al hackathon celebrado entre el 25 y 27 de marzo de 2017 en el World Hosting Days en Europa Park, Rust, Alemania. Más información: http://worldhostingdays.com/global/

Datos del hackathon: http://worldhostingdays.com/global/side-event/cloud-community-hackathon

En mi caso fui a participar en el proyecto conjunto de 1and1 e Intel donde el objetivo era comprobar las características del microprocesador Intel Edison manejando sensores y actuadores en combinación con el motor de analíticas de Intel para IoT hospedado en el cloud de 1and1. Los detalles del proyecto pueden verse en: http://worldhostingdays.com/global/project/1and1

El kit de herramientas que dispusimos fue:

  • Cloud infrastructure
    • Open IoT Connector hosted by 1&1 which connects devices to the cloud. http://streammyiot.com/
    • 1&1 Analytic Cloud Environment with MQTT broker and Node.js.

También dispusimos de la API para interactuar con el cloud de 1&1:

Arduino Edison

Intel Edison es un módulo de computación de Intel que es posible usarlo con el formato de Arduino. Está centrado en el IoT y wearables. Tiene un sistema linux yocto embebido pero es capaz de ejecutar los Sketch de Arduino que al ser compilados se guardan en un directorio del sistema de ficheros y es ejecutado. También dispone de conectividad Wi-Fi y Bluetooth.

El Intel Edison es un pequeño módulo desarrollado por Intel y orientado a la electrónica embebida incluso en proyectos comerciales. Es una pequeña placa llena de posibilidades y no es para menos ya que en su diminuto tamaño encontramos un Intel® Atom™ SoC dual-core con WiFi, Bluetooth LE integrado. Una funcionalidad importante es que dispone de un conector genérico de 70 pines para poder conectar todo tipo de periféricos y placas desarrolladas para esta plataforma.

Está pensado para aplicaciones de bajo consumo pero gracias al amplio soporte de software proporcionado por Intel, puede ser utilizado en poco minutos incluso por principiantes en electrónica.

Web Intel Edison:

Wikipedia: https://en.wikipedia.org/wiki/Intel_Edison

El kit de Arduino Edison incluye los pines hembra de Arduino, que permite conectar la mayoría de placas shields de Arduino al módulo de forma nativa. Todos los pines del 0 al 13 (junto con AREF y GND), pines analógicos 0 a 5, alimentación, ICSP y el UART están en el mismo sitio que el Arduino UNO R3 para guardar la máxima compatibilidad.  Además la placa del Intel Edison incluye un zócalo para tarjetas de memoria Micro SD, un conector Micro USB conectado al UART2 y un conector estándar USB 2.0. En la documentación se dispone de librerías para gestionar los pines de Arduino disponibles.

Arduino Edison HW guide: http://www.intel.com/content/dam/support/us/en/documents/edison/sb/edison-arduino-hardware-guide.pdf

Arquitectura Intel Edison (microprocesador):

  • Dual-core Intel® Atom™ processor at 500 MHz
  • 1 GB DDR3 RAM, 4 GB eMMC flash
  • 40 multiplexed GPIO interfaces
  • Bluetooth* 4.0, Wi-Fi*
  • Yocto Project*, Brillo*
  • Arduino* compatible
  • Open-source software development environment
  • C/C++, Python*, Node.js*, HTML5, JavaScript*

Características: http://download.intel.com/support/edison/sb/edison_pb_331179002.pdf

Arduino Edison: https://www.arduino.cc/en/ArduinoCertified/IntelEdison

Características de la placa:

  • 20 digital input/output pins, including 6 pins as PWM outputs.
  • 6 analog inputs.
  • 1 UART (Rx/Tx).
  • 1 I2C.
  • 1 ICSP (In-system programming ) 6-pin header (SPI).
  • Micro USB device connector OR (via mechanical switch) dedicated standard size USB host Type-A connector.
  • Micro USB device (connected to UART).
  • SD card connector.
  • DC power jack (7 to 15VDC input).

Documentación: https://software.intel.com/es-es/iot/hardware/edison/documentation

Intel ha desarrollado sus propias herramientas para programar el microprocesador Intel Edison, que ofrece más potencia a la hora de programarlo que con el lenguaje de Arduino y su IDE, pero tiene la desventaja de tener que aprender su SDK. El SDK puede encontrarse en descargas: https://software.intel.com/es-es/iot/hardware/edison/downloads

Al igual que el Arduino UNO el kit de Intel® Edison para Arduino hace posible tener 20 pines digitales de entrada/salida, 6 de los cuales pueden usarse como entradas analógicas. El Intel® Edison tiene 4 salidas PWM que pueden configurarse mediante jumpers para usarse en cualquiera de los 6 pines que soportan PWM en el Arduino UNO (pins 3, 5, 6, 9, 10, or 11).

Los pines de entrada/salida (I/O) y los analógicos pueden ser configurados para funcionar a 5V o 3.3V. Los pines en modo salida soportan hasta 24mA a 3.3V y 32mA a 5V

Arquitectura:

Para usar el microprocesador Intel Edison, hay también disponible una breakout board:

Breakout board: http://download.intel.com/support/edison/sb/edisonbreakout_hg_331190006.pdf

Esta breakout board ha sido diseñada para exponer los pines nativos a 1.8V del Intel® Edison y poder trabajar con ella. La placa se compone de una fuente de alimentación, una cargador de batería, USB OTG power switch, UART to USB bridge, USB OTG port y I/O header.

Pinout: http://www.intel.com/content/www/us/en/support/boards-and-kits/000006090.html

Hardware Guide: http://download.intel.com/support/edison/sb/edisonmodule_hg_331189004.pdf

Compra:

Comparativa de Intel Edison:

Edison no es una raspberry Pi, principalmente porque no hay una salida de video en Edison. Aquí hay una buena comparativa: https://www.sparkfun.com/news/1603

Más información de Intel Edison en: https://www.arduino.cc/en/ArduinoCertified/IntelEdison

Arduino Edison tiene una distribución de Yocto Linux corriendo en su interior. Más información sobre el proyecto Yocto en: https://en.wikipedia.org/wiki/Yocto_Project

Programación Arduino Edison

Arduino Edison es posible programarlo con el IDE de Arduino y es posible desde el sketch de Arduino hacer peticiones al kernel de Linux con llamadas al sistema.

Enlaces imprescindibles para empezar con Arduino Edison:

Para poder usar Arduino Intel Edison con el IDE de Arduino, es necesario instalar el paquete para las Intel i686 Boards.

Los entornos de desarrollo para Intel Edison son:

IDEs para hardware Intel: https://software.intel.com/es-es/iot/tools-ide/ide

Development environment:

Supported sensors:

Sensor kits:

Intel XDK IoT Edition (programar con node.js):

Procedure to Autostart the Arduino Sketch on Intel® Edison: https://software.intel.com/en-us/blogs/2015/08/01/procedure-to-autostart-the-arduino-sketch-on-edison

Modo AP en Intel Edison: https://software.intel.com/en-us/getting-started-with-ap-mode-for-intel-edison-board

Ejemplos de uso de Arduino Edison:

Arduino Galileo

Existen otros Arduinos con microprocesadores Intel, uno de ellos es el más reciente Arduino 101 que es el mismo concepto que Arduino UNO, pero con concepto de SoC del Arduino Edison también existe el Arduino Galileo. Este es un Arduino anterior y con menos capacidades que el Edison.

Para usar el Arduino Galileo con el IDE de Arduino es necesario instalarse el el paquete para las Intel i586 Boards.

Arduino Galileo (retirado): https://www.arduino.cc/en/ArduinoCertified/IntelGalileo

Arduino Galileo Gen2: https://www.arduino.cc/en/ArduinoCertified/IntelGalileoGen2

Web Intel: https://software.intel.com/es-es/iot/hardware/galileo

Wikipedia: https://en.wikipedia.org/wiki/Intel_Galileo

Arduino Galileo también usa Yocto Linux.

Edison vs Galileo:

Plataforma Cloud IoT de Intel

Una vez aclarado qué es Arduino Edison y que ya sabemos que podemos programarlo como cualquier otro Arduino, veamos cómo combinar nuestra experiencia con Arduino con la plataforma cloud IoT de Intel para hacer proyectos de IoT.

Intel al igual que otras muchas empresa ha desarrollado sus recursos para IoT. La Web de recursos para IoT de Intel: https://software.intel.com/es-es/iot/home

Visión de Intel en el IoT: http://www.intel.la/content/www/xl/es/internet-of-things/overview.html

La plataforma cloud IoT de Intel está disponible en http://streammyiot.com/ y es posible registrarse y usarla de forma gratuita.

Intel® IoT Analytics Platform:

  • Provides seamless Device-to-Device and Device-to-Cloud communication.
  • Ability to run rules on your data stream that trigger alerts based on advanced analytics.
  • Foundational tools for collecting, storing, and processing data in the cloud.
  • Free for limited and noncommercial use.

Con los datos recogidos con esta plataforma luego es posible extraerlos, transformarnos, cargarlos y utilizarlos. Cuando son enormes cantidades es cuando se usa el big data: https://software.intel.com/en-us/bigdata

Esta plataforma IoT está alojado el los servidores cloud de 1&1: https://www.1and1.com/dynamic-cloud-server

Para empezar a usar esta plataforma tenemos toda la documentación en:

Tutorial excelente para uso de Arduino edison con Intel IoT Analytics: http://www.instructables.com/id/Intel-IoT-Analytics-Dashboard/

Otro tutorial: https://medium.com/@shonsh/visualizing-sensor-data-using-intel-iot-analytics-d2d1de9ae118#.5ktwz5lyl

Otras plataformas de cloud analytics con las que conectar el Arduino Edison: https://software.intel.com/en-us/iot/cloud-analytics:

Uso de la Plataforma Intel IoT Analytics

Una vez aprendidos los conceptos vamos a ponerlos en práctica conectando el Arduino Edison a la plataforma Intel IoT Analytics, para ellos comencemos a recoger datos.

La programación del HW IoT tiene dos partes: recoger datos de los sensores y la de enviar los datos. Para empezar primero debemos configurar una cuenta de IoT analytics y luego seguir con la conectividad.

Pasos a dar para poner a subir datos a la plataforma:

IMPORTANTE

Para entender la estructura en que los datos se guardan en la plataforma leer: https://github.com/enableiot/iotkit-api/wiki/Api-Home#data-structure

Una vez instalado todo vemos el dashboard:

Para mandar datos desde Arduino Edison a la plataform Intel IoT Analytics podemos hacerlo vía HTTP o MQTT. En este caso vamos a usar HTTP.

Disponemos de un repositorio en github con muchos ejemplo para el IoT Kit Intel: https://github.com/enableiot/iotkit-samples

Y un muy buen ejemplo de uso de la API client for python lo tenemos en: https://github.com/enableiot/iotkit-samples/blob/master/api/python/iotkit_client.py

Estas mismas llamadas para guardar datos en la plataforma usando la API se pueden aplicar a Arduino para que guarde los datos.

Para obtener el token de usuario: https://github.com/enableiot/iotkit-api/wiki/Authorization

POST /v1/api/auth/token HTTP/1.1
Host: 109.228.56.48
Content-Type: application/json

{
    "username": "aprendiendoarduino@gmail.com",
    "password": “password"
}

 

Dar de Alta un dispositivo: https://github.com/enableiot/iotkit-api/wiki/Device-Management

PUT /v1/api/accounts/4d6398a7-49aa-45f0-8b53-54896778a736/devices/90-A2-DA-10-B3-BD/activation HTTP/1.1
Host: 109.228.56.48
Authorization: Bearer APIKEY
Content-Type: application/json

{ 
     "activationCode": "activationcode"
}

Añadir un componente a un dispositivo: https://github.com/enableiot/iotkit-api/wiki/Device-Management#add-a-component-to-a-device

POST /v1/api/accounts/4d6398a7-49aa-45f0-8b53-54896778a736/devices/90-A2-DA-10-00-00/components HTTP/1.1
Host: 109.228.56.48
Authorization: Bearer APIKEY
Content-Type: application/json
Cache-Control: no-cache

{ 
	"cid": "436e7e74-6771-4898-9057-26932f5eb7e1",
	"name": "temperatura",
	"type": "temperature.v1.0"
}

Código Arduino para poner en un actuador y que reaccione: https://github.com/enableiot/iotkit-samples/blob/master/arduino/IoTkit/examples/IoTKitActuationExample/IotKitActuationExample.ino

Data API para envío y recepción de datos: https://github.com/enableiot/iotkit-api/wiki/Data-API

Rule Management: https://github.com/enableiot/iotkit-api/wiki/Rule-Management

Alert Management: https://github.com/enableiot/iotkit-api/wiki/Alert-Management

Error Handling: https://github.com/enableiot/iotkit-api/wiki/Error-Handling

Hackathon WHD

Ahora que ya sabemos como manejar la plataforma y como mandar los datos desde el Arduino Edison, en el Hackathon del WHD planteamos un proyecto de una planta solar inteligente que en función de la demanda energética, es capaz de activar o desactivar paneles monitorizados en tiempo real y detectar cualquier incidencia o avería, dentro del proyecto de Intel y 1&1: http://worldhostingdays.com/global/project/1and1

El material usado en el hackathon fue:

Repositorio con documentación y ejemplo para el hackathon del WHD: https://github.com/srware/WHD.global-2017

Repositorio de todo el trabajo hecho en el hackathon: https://github.com/jecrespo/aprendiendoarduino-iot/tree/master/04-Intel%20IoT%20Analytics

El grupo de Españoles trabajando con Arduino:

En el hackathon:

Para conectar a red Arduino Edison:

Cómo cargar un programa en el Edison: https://www.arduino.cc/en/Guide/IntelEdison

Comandos interesantes en yocto linux

  • configure_edison –help
  • iotkit-admin
  • systemctl stop iotkit-agent
  • systemctl start iotkit-agent
  • systemctl status iotkit-agent -l
  • iotkit-admin catalog
  • iotkit-admin register
  • iotkit-admin observation

Dentro del Arduino Edison debe estar instalada la versión de yocto con el iotkit, que es un agente al que puede llamar para hacer determinadas tareas en la plataforma IoT de Intel. Explicación: “The agent is a program that runs as a daemon on the device, listening for simple messages from other processes and handling the necessary message formatting and security to send observations to the cloud. The agent comes with another program, iotkit-admin, which provides many utility functions, such as testing the network, activating a device, registering time series, and sending test observations. The agent is controlled by systemctl, the systemd service manager.”

Cuando cargamos un sketch de Arduino en el Edison, este se pierde después de reiniciar la placa. Para que funcione en el reinicio poner este fichero en el systemctl: /etc/systemd/system/arduino-sketch.service

Contenido del fichero:

systemctl daemon-reload
systemctl status arduino-sketch.service
systemctl enable arduino-sketch.service

Para resolver los problemas con el timezone debo realizar estos pasos

  • timedatectl status
  • ls -l /etc/localtime
  • cd /usr/share/zoneinfo (ver dónde está configurado)
  • timedatectl set-timezone Europe/Paris (y pongo esta)

Para ver el catálogo: iotkit-admin catalog

Para registrar componentes:

  • iotkit-admin register panel_temperature temperature.v1.1
  • iotkit-admin register solar_radiation radiation.v1.0
  • iotkit-admin register onoffButton button.v1.1
  • iotkit-admin register alarm powerswitch.v1.0
  • iotkit-admin register status powerswitch.v1.0

Para cambiar protocolo:

  • iotkit-admin protocol ‘mqtt’
  • iotkit-admin protocol ‘rest+ws’

Con estos detalles que aprendimos de la gente de Intel que estuvo en el hackathon pudimos hacer nuestro proyecto de una planta solar conectada y el resultado se puede ver en https://github.com/jecrespo/aprendiendoarduino-iot/tree/master/04-Intel%20IoT%20Analytics

Vídeo del resultado:

Y nuestra presentación: https://www.slideshare.net/jecrespo/whd-global-2017-smart-power-plant

Nuestro proyecto: https://www.1and1.com/cloud-community/develop/hackathon-projects/11-and-intel/smart-solar-power-plant/

Y finalmente nuestro proyecto fue presentado en el WHD:

Más fotos y publicaciones de

Durante el hackathon se presentó la cloud community de 1&1: www.1and1.com/cloud-community

Qué es Arduino

Esta conferencia sobre IoT con Arduino fue expuesta el 1 de abril de 2017 con motivo del Arduino Day. Puedes ver el video de la conferencia completa en http://www.innovarioja.tv/index.php/video/ver/1661


Arduino es una plataforma de hardware libre, basada en una placa con un microcontrolador y un entorno de desarrollo, diseñada para facilitar el uso de la electrónica en proyectos multidisciplinares.

Hardware Libre: http://es.wikipedia.org/wiki/Hardware_libre

Definición de Arduino en la web oficial: https://www.arduino.cc/en/Guide/Introduction

Otras definiciones de Arduino:

Arduino es una plataforma abierta que facilita la programación de un microcontrolador. Los microcontroladores nos rodean en nuestra vida diaria, usan los sensores para escuchar el mundo físico y los actuadores para interactuar con el mundo físico. Los microcontroladores leen sobre los sensores y escriben sobre los actuadores.

En palabras de David Cuartielles: “Actualmente todo lo que nos rodea en la vida es digital (entendido como hacer operaciones matemáticas complejas y comunicar con otros dispositivos), cualquier cosa lleva un microchip, desde el microondas a un coche. Arduino lleva uno de esos microchips y te permite aprender a manejar como funciona el mundo en el que vivimos hoy en día y cómo interactúa el hombre con el mundo digital. Arduino es la puerta hacia tomar control de cómo funcionan las cosas actualmente y en el futuro. Así que encender el ordenador y empezar a programar.

El HW Arduino:

Por otro lado Arduino nos proporciona un  software consistente en un entorno de desarrollo (IDE) que implementa el lenguaje de programación de arduino y el bootloader ejecutado en la placa. La principal característica del software de programación y del lenguaje de programación es su sencillez y facilidad de uso.

El software hecho para Arduino es portable, es decir, el mismo firmware que hemos hecho para un Arduino/Microcontrolador, sirve para otras placas Arduino u otras placas compatibles Arduino como el ESP8266.

Hay otro factor importante en el éxito de Arduino, es la comunidad que apoya todo este desarrollo, comparte conocimiento, elabora librerías para facilitar el uso de Arduino y publica sus proyectos para que puedan ser replicados, mejorados o ser base para otro proyecto relacionado.

La expresión local de la comunidad Arduino son los makerspaces como el UR-maker de la Universidad de La Rioja: http://www.unirioja.es/urmaker/

Para recibir información de los eventos de la comunidad maker de Logroño inscribirse en la lista de correo noticias@aprendiendoarduino.com o mandar un correo a aprendiendoarduino@gmail.com para inscribirse.

En resumen:

Arduino = HW + SW + Comunidad

¿Para qué sirve Arduino? Arduino se puede utilizar para desarrollar elementos autónomos, conectándose a dispositivos e interactuar tanto con el hardware como con el software. Nos sirve tanto para controlar un elemento, pongamos por ejemplo un motor que nos suba o baje una persiana basada en la luz existente es una habitación, gracias a un sensor de luz conectado al Arduino, o bien para leer la información de una fuente, como puede ser un teclado, y convertir la información en una acción como puede ser encender una luz y pasar por un display lo tecleado.

Librerías Arduino

Las librerías son trozos de código hechos por terceros que usamos en nuestro sketch. Esto nos facilita mucho la programación y hace que nuestro programa sea más sencillo de hacer y de entender. En este curso no veremos como hacer o modificar una librería pero en este curso debemos ser capaces de buscar una librería, instalarla, aprender a usar cualquier librería y usarla en un sketch.

Las librerías son colecciones de código que facilitan la interconexión de sensores, pantallas, módulos electrónicos, etc. El entorno de arduino ya incluye algunas librerías de manera que facilita, por ejemplo, mostrar texto en pantallas LCD.

Existen infinidad de librerías desarrolladas por terceros en internet con sus correspondientes forks, que nos ayudarán a conectar prácticamente cualquier dispositivo a los Arduinos de forma muy sencilla.

En este momento hay 883 librerías oficiales de Arduino, listado: http://www.arduinolibraries.info/ y cada semana aumenta.

Programación Arduino

El lenguaje de programación de Arduino es C++. No es un C++ puro sino que es una adaptación que proveniente de avr-libc que provee de una librería de C de alta calidad para usar con GCC (compilador de C y C++) en los microcontroladores AVR de Atmel y muchas utilidades específicas para las MCU AVR de Atmel como avrdude: https://learn.sparkfun.com/tutorials/pocket-avr-programmer-hookup-guide/using-avrdude

Aunque se hable de que hay un lenguaje propio de programación de Arduino, no es cierto, la programación se hace en C++ pero Arduino ofrece unas librerías o core que facilitan la programación de los pines de entrada y salida y de los puertos de comunicación, así como otras librerías para operaciones específicas. El propio IDE ya incluye estas librerías de forma automática y no es necesario declararlas expresamente. Otra diferencia frente a C++ standard es la estructuctura del programa.

Toda la información para programar Arduino se encuentra en el reference de la web de Arduino: https://www.arduino.cc/en/Reference/HomePage

Aplicaciones Arduino

Desde los inicios de Arduino y el HW Open Source, la industria encontró una forma sencilla y barata de implementar el Internet de las cosas y la Industria 4.0. Con estas herramientas es posible realizar tareas como:

  • Machinery automation.
  • Installation Control. (Thermal, Climate conditioning, Water treatment, Chemical products, Food, etc.).
  • Industrial monitoring.
  • Data acquisition.
  • etc.