Archivo de la etiqueta: Microcontroladores

Hardware Arduino para la Educación

Hardware Arduino

Arduino es una plataforma para prototipado de electrónica basada en hardware y software libre y fácil de utilizar. Podemos construir circuitos electrónicos y programarlos con esta placa.

Realmente lo que estamos haciendo es programar un microcontrolador, estos dispositivos electrónicos programables nos rodean en nuestro día a día, en el coche, nuestra casa, el trabajo, etc…

Las principales características que podemos encontrar en nuestra placa de Arduino UNO son las siguientes:

  • El microcontrolador es un circuito integrado programable capaz de realizar operaciones matemáticas complejas a gran velocidad.
  • La alimentación de una placa de Arduino es mediante el puerto USB mientras se está programando. Una vez programado podemos desconectarlo del ordenador y que trabaje de forma autónoma y se alimenta Arduino mediante una fuente de alimentación o pila de 9V.
  • Tanto las entradas como las salidas dotan al sistema de información y realizan diferentes actuaciones.

Arduino contiene la siguiente distribución de pines:

  • Disponemos de 14 pines digitales que pueden ser configurados como entradas o salidas, de los cuales (serigrafiadas con el símbolo ~) pueden ser utilizados como señales digitales PWM 6 pines.
  • Igualmente disponemos de 6 pines analógicos serigrafiadas desde A0 hasta A5 para las entradas analógicas.
  • También disponemos de 3 pines GND para conectar a tierra nuestros circuitos.
  • Y por último 2 pines de alimentación de 5V y 3.3V respectivamente.

Para saber más:

Sensores

Un sensor es un dispositivo capaz de detectar magnitudes físicas o químicas, llamadas variables de instrumentación, y transformarlas en variables eléctricas.

  • Las variables de instrumentación pueden ser por ejemplo: temperatura, intensidad lumínica, distancia, aceleración, inclinación, desplazamiento, presión, fuerza, torsión, humedad, movimiento, pH, etc.
  • Una magnitud eléctrica puede ser una resistencia eléctrica (como en una RTD), una capacidad eléctrica (como en un sensor de humedad o un sensor capacitivo), una tensión eléctrica (como en un termopar), una corriente eléctrica (como en un fototransistor), etc.

Un sensor nos va a poder medir/leer las variables ambientales de nuestro entorno para poder tomar decisiones en función de los cambios en el entorno.

Ejemplos de sensores. Kits Arduino: http://www.robotshop.com/en/37-modules-sensor-kit-arduino.html

Listado de componentes: http://tienda.bricogeek.com/upload/datasheets/SEN-0060/37-en-1-especificaciones.pdf

Actuadores

Un actuador es un dispositivo capaz de transformar energía hidráulica, neumática o eléctrica en la activación de un proceso con la finalidad de generar un efecto sobre elemento externo. Este recibe la orden de un regulador, controlador o en nuestro caso un Arduino y en función a ella genera la orden para activar un elemento final de control como, por ejemplo, una válvula.

Existen varios tipos de actuadores como son:

  • Electrónicos
  • Hidráulicos
  • Neumáticos
  • Eléctricos
  • Motores
  • Bombas

En determinadas ocasiones, necesitamos un “driver” o manejador para poder mandar órdenes desde Arduino.

  • Recordad que los pines de Arduino solo pueden manejar un máximo de 40mA y recomendable usar 20mA de forma continua.
  • Recordar que Arduino solo puede manejar un total de 200 mA de salida. Es decir que la corriente máxima que admite Vcc y GND son 200 mA.

Un actuador nos permite interactuar con el entorno.

Periféricos

Periférico es la denominación genérica para designar al aparato o dispositivo auxiliar e independiente conectado a la unidad central de procesamiento o en este caso a Arduino. Se consideran periféricos a las unidades o dispositivos de hardware a través de los cuales Arduino se comunica con el exterior, y también a los sistemas que almacenan o archivan la información, sirviendo de memoria auxiliar de la memoria principal.

Ejemplos de periféricos:

  • Pantallas LCD
  • Teclados
  • Memorias externas
  • Cámaras
  • Micrófonos
  • Impresoras
  • Pantalla táctil
  • Displays numéricos
  • Zumbadores
  • Indicadores luminosos, etc…

En ocasiones para usar un periférico con Arduino, necesitamos un “driver” o manejador para poder mandar órdenes desde Arduino.

Shields Arduino

Las shields son placas de circuitos modulares que se montan unas encima de otras para dar funcionalidad extra a un Arduino. Esta Shields son apilables.

Existen miles de shields en función de lo que necessitemos: http://shieldlist.org/

Shields Educativos

Uno de los problemas que se encuentran a la hora de impartir un curso de electrónica y programación con Arduino en los colegios es la dificultad de comprobar los montajes de los circuitos de los alumnos. Sobre todo cuando se trata de los más pequeños.

Existen shields educativos que facilitan el trabajo en el aula. Son shields que o bien permiten conectar y listo o bien tienen varios componente integrados que evitan hacer cableados y no tener que saber de electrónica.

Shield Educativo Multifunción

Shield educativo + mblock https://www.prometec.net/blog-shield-educativo-multifuncion/

Echidna

EchidnaShield es un proyecto Open Source dirigido a facilitar el aprendizaje de la programación de sistemas físicos en los últimos cursos de Primaria y en Secundaria. Con este fin se ha diseñado un escudo para Arduino, pensando en su uso con entornos visuales de programación. El escudo está apoyado en una guía educativa con propuestas de actividades para el aula.

Toda la información en: http://echidna.es/

BQ Zum Kit

Web: https://www.bq.com/es/zum-kit

Grove Starter Kit

Web: https://www.seeedstudio.com/Grove-Starter-Kit-for-Arduino-p-1855.html

Grove System: http://www.seeedstudio.com/wiki/GROVE_System

Wiki: http://www.seeedstudio.com/wiki/Grove_-_Starter_Kit_v3

Kit conectar y listo: http://www.electan.com/arduino-shield-kit-modulos-conectar-listo-p-2987.html  

Makey Makey

MaKey MaKey es una placa de circuito impreso con un microcontrolador ATMega32u4 que ejecuta el firmware de Arduino Leonardo. Utiliza el protocolo de dispositivos de interfaz humana (HID) para comunicarse con el ordenador, y puede enviar pulsaciones de teclas, clics del mouse y movimientos. Para detectar un circuito cerrado en los pines de entrada digital, usa switches de alta resistencia para que sea posible cerrar un interruptor incluso a través de materiales como la piel, hojas y play-doh. Usa una resistencia de pull-up de 22 mega ohms. Esta técnica atrae el ruido en la entrada, pero usa promediador para reducir el ruido mediante software, ahorrando dinero en el filtrado por hardware. Hay seis entradas en la parte frontal de la placa, que se pueden unir a través de conectores tipo cocodrilo o cualquier otro método que se te ocurra. Hay otras 12 entradas en la parte posterior, 6 para las teclas del teclado y 6 para el movimiento del mouse, a las que se puede acceder usando jumpers, clips o conectores de tipo cocodrilo de forma creativa alrededor de los conectores.

Más información:

Avanzado de Makey Makey

Firmware de Makey Makey: https://github.com/sparkfun/MaKeyMaKey/tree/master/firmware/Arduino/makey_makey

Repositorio Makey Makey: https://github.com/sparkfun/MaKeyMaKey

Web donde comprar: https://www.ro-botica.com/

Picuino

Picuino es una plataforma de hardware y software que facilita el desarrollo sencillo de proyectos interactivos.

Picuino: http://www.picuino.com/

NanoPlayBoard

NanoPlayBoard es un Shield educacional para Arduino Nano hecha en Almería.

Web del proyecto: http://nanoplayboard.org/

NanoPlayBoard tiene una librería ya configurada en la que está todo el código necesario para llevar a cabo esos experimentos básicos.

Una placa open sourece con muchas posibilidades:

littleBits

littleBits es una empresa con sede en la ciudad de Nueva York que hace una biblioteca de código abierto de electrónica modular, que consiste en juntar piezas con pequeños imanes para la creación de prototipos. El objetivo de la compañía es democratizar el hardware de la misma forma que el software y la impresión se han democratizado. La misión de littleBits es «poner el poder de la electrónica en manos de todos y analizar tecnologías complejas para que cualquiera pueda construir, crear prototipos e inventar».

El kit de codificación little littlebits Arduino permite a los usuarios comenzar a crear inventos que se comunican con el software (Processing, MaxMSP, etc.), con el apoyo de instrucciones paso a paso, recursos útiles en línea y 8 bocetos de muestra (código prefabricado) incluido. Aprende las habilidades del futuro: codificación, ingeniería y creatividad.

Web: https://www.littlebits.com/

Entender Arduino

Arduino no solo es una placa azul muy popular con la que hacer semáforos, encender leds o usado en las impresoras 3D. Arduino va mucho más allá y vamos a verlo en este capítulo.

Primer Arduino:

Ya hemos visto anteriormente qué es Arduino: https://aprendiendoarduino.wordpress.com/2018/04/02/que-es-arduino-7/

A modo de resumen los tres componentes de Arduino son:

Arduino = HW + SW + Comunidad

Arduino simplifica el trabajo con microcontroladores y ofrece las siguientes ventajas: barato, multiplataforma, entorno de programación sencillo, software libre y extensible mediante librerías en C++, hardware libre y extensible.

Al trabajar con Arduino, se manejan conceptos de diferentes tecnologías que a priori no tienen nada que ver entre ellos pero que los unifica: electronica digital y analogica, electricidad, programación, microcontroladores, tratamiento de señales, protocolos de comunicación, arquitectura de procesadores, mecánica, motores, diseño de placas electrónicas etc…

Diez razones para usar Arduino: http://www.modulo0tutoriales.com/10-razones-para-usar-arduino/

Mitos sobre Arduino que todo el mundo cree y no son verdad: https://www.baldengineer.com/5-arduino-myths.html

HW Arduino

El HW de Arduino es básicamente una placa con un microcontrolador. Un microcontrolador (abreviado µC, UC o MCU) es un circuito integrado programable, capaz de ejecutar las órdenes grabadas en su memoria. Está compuesto de varios bloques funcionales, los cuales cumplen una tarea específica. Un microcontrolador incluye en su interior las tres principales unidades funcionales de una computadora: unidad central de procesamiento, memoria y periféricos de entrada/salida.

Características de un Microcontrolador:

  • Velocidad del reloj u oscilador
  • Tamaño de palabra
  • Memoria: SRAM, Flash, EEPROM, ROM, etc..
  • I/O Digitales
  • Entradas Analógicas
  • Salidas analógicas (PWM)
  • DAC (Digital to Analog Converter)
  • ADC (Analog to Digital Converter)
  • Buses
  • UART
  • Otras comunicaciones.

El hardware de Arduino usa microcontroladores generalmente Atmel AVR. Los microcontroladores más usados en las plataformas Arduino son el Atmega168, Atmega328, Atmega1280, ATmega8 por su sencillez, pero se está ampliando a microcontroladores Atmel con arquitectura ARM como el Atmel SAMD21 o los ST STM32, y también Intel.

Arduino dispone de una amplia variedad de placas y shields para usar dependiendo de nuestras necesidades.

Placas Arduino: https://aprendiendoarduino.wordpress.com/2017/06/19/placas-arduino-2/

Un shield es una placa compatible que se puede colocar en la parte superior de los arduinos y permite extender las capacidades del arduino.

Shields Arduino: https://aprendiendoarduino.wordpress.com/2017/06/20/shields-arduino-3/

HW Compatible Arduino

Además del HW oficial de Arduino tenemos infinidad de placas compatibles con Arduino.

Dentro del HW compatible con Arduino podemos distinguir tres tipos:

Listados de placas Arduino y compatibles:

Dentro del entorno Arduino, podemos encontrar placas basadas en el microcontrolador ESP8266 con wifi integrado y pila de protocolos TCP/IP que no sigue el factor de forma de Arduino. De este microcontrolador han salido muchas placas como las wemos https://www.wemos.cc/

Resultado de imagen de wemos.jpg

Placas de otros fabricantes de microcontroladores como Microchip o Mediatek con sus modelos ChipKit o LinkIt.

Documentación de la placa linkit one:

SW Arduino

El software de Arduino es un IDE, entorno de desarrollo integrado (siglas en inglés de Integrated Development Environment). Es un programa informático compuesto por un conjunto de herramientas de programación.

El IDE de Arduino es un entorno de programación que ha sido empaquetado como un programa de aplicación; es decir, consiste en un editor de código, un compilador, un depurador y un constructor de interfaz gráfica (GUI). Además incorpora las herramientas para cargar el programa ya compilado en la memoria flash del hardware.

Es destacable desde la aparición de la versión 1.6.2 la incorporación de la gestión de librerías y la gestión de placas muy mejoradas respecto a la versión anterior y los avisos de actualización de versiones de librerías y cores.

Todos lo cambios en la versiones pueden verse en: https://www.arduino.cc/en/Main/ReleaseNotes

Código fuente del IDE de Arduino está disponible en: https://github.com/arduino/Arduino/  y las instrucciones para construir el IDE desde código fuente pueden verse en: https://github.com/arduino/Arduino/wiki/Building-Arduino

Podemos también ver los problemas/bugs detectados de la versión actual y hacer un seguimiento de ellos: https://github.com/arduino/Arduino/issues y en http://forum.arduino.cc/index.php?board=2.0

En principio el IDE de arduino solo tenía soporte para las placas Arduino y los clones o forks con los mismos microcontroladores que los Arduinos oficiales. Desde la versión 1.6.2 del IDE de arduino.cc y gracias al gestor de placas, podemos añadir soporte a otros microcontroladores y placas al IDE de Arduino, como al ESP8266.

Listado de URLs para soporte de tarjetas no oficiales: https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls

Arduino.cc tiene disponible un IDE on-line dentro del entorno Arduino Create https://create.arduino.cc/ que es una plataforma on-line integrada que permite escribir código, acceder a contenido, configurar placas y compartir proyectos, muy enfocado al Internet de las Cosas (IoT).

También existen otros IDEs alternativos como Atmel Studio http://www.atmel.com/Microsite/atmel-studio/ para microntroladores Atmel.

El software hecho para Arduino con el IDE es portable, es decir, el mismo firmware que hemos hecho para un Arduino/Microcontrolador, sirve para otras placas Arduino u otras placas compatibles Arduino como el ESP8266.

Comunidad Arduino

Un factor del éxito de Arduino ha sido la comunidad que está apoyando este proyecto y que día a día publica nuevo contenido, divulga y responde a las dudas.

En Internet hay disponible todo tipo de cursos, tutoriales, herramientas de consulta, proyectos, etc… que ayudan a que se pueda usar Arduino con facilidad.

El primer sitio donde empezar para trabajar con Arduino es http://www.arduino.cc/ y el segundo sitio el playground de Arduino http://playground.arduino.cc/

Arduino playground es un wiki donde todos los usuarios de Arduino pueden contribuir. Es el lugar donde publicar y compartir código, diagrama de circuitos, tutoriales, trucos, cursos, etc.. y sobretodo el lugar donde buscar cuando tengamos dudas, un problema, una librería adecuada para nuestro proyecto, etc… Esa la base de datos de conocimiento por excelencia de Arduino.

Arduino playground: http://playground.arduino.cc/

Algunos apartados importantes en playground.

Otro lugar donde la comunidad colabora, se puede buscar información y preguntar las dudas que tengamos, es el foro Arduino: http://forum.arduino.cc/.

También existen lugares no oficiales de Arduino donde resolver nuestras dudas:

Arduino en las redes sociales:

Otro lugar de encuentro de la comunidad son diversos portales donde se publican proyectos con Arduino:

Por último, también hay espacios locales para la comunidad, son los llamados hacklabs hackerspace, makerspace, etc.. que aunque hay ciertas diferencias entre unos y otros, se trata de un sitio físico donde gente con intereses en ciencia, nuevas tecnologías, y artes digitales o electrónicas se puede conocer, socializar y colaborar. Puede ser visto como un laboratorio de comunidad abierta, un espacio donde gente de diversos trasfondos puede unirse. Pone al alcance de aficionados y estudiantes de diferentes niveles la infraestructura y ambiente necesarios para desarrollar sus proyectos tecnológicos.

Hacklab: https://es.wikipedia.org/wiki/Hacklab

Mejores prácticas Hackerspaces: https://elplatt.com/new-hackerspace-design-patterns

Listado de Hackerspaces: https://hackerspaces.org/wiki/List_of_ALL_Hacker_Spaces

También hay otro espacio local algo diferente que son los fablabs: es un espacio de producción de objetos físicos a escala personal o local que agrupa máquinas controladas por ordenadores.

Fablab: https://es.wikipedia.org/wiki/Fab_lab

Qué es un fablab: http://fab.cba.mit.edu/about/charter/

Este podcast explica las diferencias entre estos espacios: http://make.cesargarciasaez.com/2016/02/01/la-hora-maker-010-fablabs-makespaces-hackerspaces-y-hacklabs/

Movimiento maker: https://en.wikipedia.org/wiki/Maker_culture

Más información sobre la comunidad, makerspaces y fablabs, ver los artículos:

Filosofía Arduino

Por último para entender bien lo que es Arduino, es recomendable ver el documental de Arduino de unos 30 minutos de duración. Arduino the Documentary: http://blog.arduino.cc/2011/01/07/arduino-the-documentary-now-online/

IoT Manifesto: https://create.arduino.cc/iot/manifesto/

We believe that the best way to grow this environment is to develop open source platforms and protocols to propose as an alternative to the myriad of proprietary hardware and software platforms each one of the big players are developing.
We believe in creating tools that make these technologies understandable to the most diverse set of people as possible, this is the only way to make sure innovation benefits most of humanity.
We propose that connected devices should be: Open, Sustainable and Fair.

We foresee a world with billions of connected smart objects. These smart objects will be composed and orchestrated, thus making the Internet of Things a reality. The IoT will be the eyes, noses, arms, legs, hands of a new, extended, cyber body. The nervous system of such a body will be the Internet, allowing the interaction with a distributed intelligence made of hardware processors and human minds, behaviors, software procedures, and services, shared in the Cloud.

Qué es Arduino

Arduino es un dispositivo programable como es un ordenador, un móvil, un tablet o un PLC, es decir, se puede cambiar el comportamiento o la funcionalidad del dispositivo mediante unas órdenes en un lenguaje concreto que es capaz de ser interpretado por el dispositivo y seguir esas órdenes con el fin de realizar una tarea automática o resolver un problema.

En el caso de los ordenadores, móviles o tablets, la entrada de los datos y la interacción con las personas es a través del teclado, ratón, pantalla táctil o incluso la posición GPS o la inclinación del móvil y la salida de los resultados o visualización por las personas es a través de la pantalla. Sin embargo un PLC/Autómata o un Arduino, la interacción con el humano o con el entorno no está tan limitada como en el caso de un Ordenador o un tablet, los interfaces de comunicación (entrada/salida) son ilimitados y consisten en ciertos componentes hardware (transductores) que convierten los cambios de energía producidos por las alteraciones en el medio físico, en señales eléctricas entendibles por las máquinas. Por lo tanto las entradas a estos dispositivos son los sensores y las salidas son los actuadores que convierten las señales eléctricas en magnitudes físicas.

Arduino es un dispositivo programable que nos permite interactuar con el entorno, pudiendo leer la temperatura de una sala, el deslizamiento de una rueda o el ángulo de inclinación de una plataforma y escribir/actuar sobre el encendido de una caldera, los frenos del coche o un motor para nivelar una plataforma.

La computación física se refiere al diseño de objetos y espacios que reaccionan a cambios en el entorno y actúan en este. Se basa en la construcción de dispositivos que incluyen microcontroladores, sensores y actuadores y que pueden tener capacidades de comunicación con la red u otros dispositivos.

Arduino es una plataforma de hardware libre, basada en una placa con un microcontrolador y un entorno de desarrollo, diseñada para facilitar el uso de la electrónica en proyectos multidisciplinares.

Hardware Libre: http://es.wikipedia.org/wiki/Hardware_libre

Arduino es una plataforma abierta que facilita la programación de un microcontrolador. Los microcontroladores nos rodean en nuestra vida diaria, usan los sensores para escuchar el mundo físico y los actuadores para interactuar con el mundo físico. Los microcontroladores leen sobre los sensores y escriben sobre los actuadores.

En palabras de David Cuartielles: “Actualmente todo lo que nos rodea en la vida es digital (entendido como hacer operaciones matemáticas complejas y comunicar con otros dispositivos), cualquier cosa lleva un microchip, desde el microondas a un coche. Arduino lleva uno de esos microchips y te permite aprender a manejar como funciona el mundo en el que vivimos hoy en día y cómo interactúa el hombre con el mundo digital. Arduino es la puerta hacia tomar control de cómo funcionan las cosas actualmente y en el futuro. Así que encender el ordenador y empezar a programar.

Arduino no solo proporciona las placas (Hardware), sino que nos proporciona un software consistente en un entorno de desarrollo (IDE), un lenguaje de programación simplificado para el HW y el bootloader ejecutado en la placa. La principal característica del software (IDE) y del lenguaje de programación es su sencillez y facilidad de uso.

Arduino promete ser una forma sencilla de realizar proyectos interactivos para cualquier persona. Para alguien que quiere hacer un proyecto, el proceso pasa por descargarnos e instalar el IDE buscar un poco por internet y simplemente hacer «corta y pega» del código que nos interese y cargarlo en nuestro HW. Luego hacer los cableados correspondientes con los periféricos y ya tenemos interaccionando el software con el Hardware. Todo ello con una inversión económica mínima: el coste del Arduino y los periféricos.

Arduino es una tecnología que tiene una rápida curva de aprendizaje con básicos conocimientos de programación y electrónica, que permite desarrollar proyectos en el ámbito de las Smart Cities, el Internet de las cosas, dispositivos wearables, salud, ocio, educación, robótica, etc…

Definición de Arduino en la web oficial: https://www.arduino.cc/en/Guide/Introduction

Otras definiciones de Arduino:

Que es arduino en un minuto (video): http://learn.onemonth.com/what-is-arduino

Hay otro factor importante en el éxito de Arduino, es la comunidad que apoya todo este desarrollo, comparte conocimiento, elabora librerías para facilitar el uso de Arduino y publica sus proyectos para que puedan ser replicados, mejorados o ser base para otro proyecto relacionado.

En resumen:

Arduino = HW + SW + Comunidad

¿Para qué sirve Arduino?

Arduino se puede utilizar para desarrollar elementos autónomos, conectándose a dispositivos e interactuar tanto con el hardware como con el software. Nos sirve tanto para controlar un elemento, pongamos por ejemplo un motor que nos suba o baje una persiana basada en la luz existente es una habitación, gracias a un sensor de luz conectado al Arduino, o bien para leer la información de una fuente, como puede ser un teclado, y convertir la información en una acción como puede ser encender una luz o mostrar por un display lo tecleado.

Con Arduino  es posible automatizar cualquier cosa para hacer agentes autónomos (si queréis llamarles Robots también). Controlar luces y dispositivos, o cualquier otra cosa que se pueda imaginar, es posible optar por una solución basada en Arduino. Especialmente en desarrollos de dispositivos conectados a Internet, Arduino es una solución muy buena.

Qué puede hacer Arduino? https://aprendiendoarduino.wordpress.com/2016/06/26/que-puede-hacer-arduino/

Entornos de aplicación de Arduino? https://aprendiendoarduino.wordpress.com/2016/06/26/entornos-de-aplicacion-arduino/

Documentación Arduino

Arduino tiene que ver con el código abierto, y los sitios Docs y Help Center de Arduino ahora se unen al club de la comunidad convirtiéndose en código abierto. Los amantes de Arduino en todas partes ahora pueden contribuir al contenido de los sitios web oficiales de documentación de Arduino a través de sus repositorios públicos de GitHub.

Arduino documentation: https://docs.arduino.cc/

Arduino Help Center: https://support.arduino.cc/hc/en-us 

  • General «how-to» articles
  • Troubleshooting articles
  • Answering common questions

Se puede contribuir a la documentación de Arduino teniendo una cuenta de github.

Más información: https://blog.arduino.cc/2022/02/28/arduino-documentation-goes-open-source-for-community-contributions/ 

Arduino Pro

Arduino goes pro: https://blog.arduino.cc/2020/01/07/arduino-goes-pro-at-ces-2020/

Web: https://www.arduino.cc/pro

HW:

Pro family: https://docs.arduino.cc/#pro-family 

Boards

Carriers

Shields

Certificación Arduino

El Examen de Fundamentos (Fundamentals Exam) es el primer nivel en el Arduino Certification Program (ACP) está diseñado para poner a prueba los conocimientos de los principiantes en electrónica, programación y computación física relacionados con Arduino.

El examen está disponible para todos los interesados en certificar oficialmente sus habilidades y conocimientos sobre Arduino, que podrían, por ejemplo, ser referidos en un curriculum vitae para fines académicos o profesionales.

El Examen de Fundamentos está ahora también abierto a escuelas, instituciones académicas, universidades y empresas que estén interesadas en que sus estudiantes y empleados se certifiquen oficialmente.

Más información y acceso a la certificación:

De momento solo está disponible el Arduino Fundamentals, pero se espera que amplíe el catálogo de certificaciones.

El examen ya está disponible en español: https://blog.arduino.cc/2020/01/20/the-arduino-fundamentals-certification-exam-is-now-available-in-spanish-and-italian/

Kit recomendable para preparar la certificación: https://store.arduino.cc/genuino-starter-kit

Guia del examen: https://create.arduino.cc/edu/courses/local/certification/guide.pdf

FAQ certificación Arduino: https://create.arduino.cc/edu/courses/local/certification/faq.html

Como funciona la certificación: https://www.youtube.com/watch?v=qNj7sQP_jaA

Explicación de la certificación: https://blog.arduino.cc/2021/11/12/arduino-certification-explained/ 

Demo de la certificación para comprobar como va a ser el examen.: https://create.arduino.cc/edu/courses/local/quiz/index.php

Comunicación de Arduino sobre la certificación:

Microcontroladores Arduino a Fondo

Un microcontrolador es un integrado capaz de ser programado desde un ordenador y seguir la secuencia programada.

Como vimos anteriormente, Arduino es una plataforma para programar de forma sencilla algunos microcontroladores de la familia AVR de Atmel http://es.wikipedia.org/wiki/AVR y también microcontroladores Atmel ARM Cortex-M0+ o Intel http://www.intel.com/content/dam/support/us/en/documents/boardsandkits/curie/intel-curie-module-datasheet.pdf, y un hardware con ese MCU donde acceder físicamente a sus puertos.

Pero también Arduino y su entorno de programación se está convirtiendo en un estándar de facto para la programación de cualquier tipo de placas de desarrollo y prototipado, es decir, de otro tipo de microcontroladores no incluidos en los productos de Arduino. Gracias a la comunidad es posible programar otros microcontroladores de ST microelectronics o los ESP8266 y ESP32 de espressif http://espressif.com/ que podemos comprar con placas como la nodeMCU http://nodemcu.com/index_en.html o la bluepill http://wiki.stm32duino.com/index.php?title=Blue_Pill.

Puesto que Arduino es una plataforma open source disponemos de toda la documentación de los microcontroladores usados.

Por ejemplo, el microcontrolador de Arduino UNO es el ATmega328p y toda la documentación la tenemos en http://www.microchip.com/wwwproducts/en/ATmega328p. El data sheet completo es un documento de 442 páginas que podemos ver en http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf. Cuando necesitemos más información o cómo funciona este microcontrolador debemos ir a este documento.

Como muestra de la documentación que tenemos disponible:

  • Página 34 tenemos el detalle de cómo se distribuye la memoria en el ATmega328p
  • Página 97 tiene en detalle los puertos digitales I/O y página 100 donde da el código para definir un pines a high y low y también como input pullup.
  • Página 436 tenemos los 3 encapsulados posibles para este microcontrolador
  • Página 316 nos muestra que este microcontrolador tiene un sensor de temperatura integrado y que es posible habilitarlo para leer su temperatura.
  • Página 378 se pueden ver los consumos de Arduino y la dependencia entre la frecuencia máxima de reloj y el Vcc.
  • Página 428 hay un resumen de todos los registros del microcontrolador y su dirección de memoria.

Cuando el microcontrolador ejecuta una instrucción que definimos en el sketch, internamente hace muchas operaciones y cada una de esas operaciones se ejecuta en un ciclo de reloj. Para el ATmega 328p que tiene una frecuencia de 16 MHz, es decir, cada ciclo tarda 0,0000000625 segundos = 0,0625 microsegundos = 62,5 nanosegundos

Así se ejecutaría una instrucción, en cada ciclo de reloj se ejecuta cada subinstrucción.

La importancia de conocer el ciclo de ejecución de instrucciones en un microcontrolador estriba en que en ocasiones es necesario calcular de forma precisa el tiempo de ejecución de los bucles para actuar en tiempo real.

Cálculos de la velocidad de las operaciones en Arduino: http://forum.arduino.cc/index.php?topic=200585.0

El método para calcular estas tablas está en http://forum.arduino.cc/index.php?topic=200585.0

Diferencia entre los microcontroladores de 8 bits, 16, y 32 bits, es tamaño de palabra que manejan e influye en los registros y direccionamiento de memoria: http://es.wikipedia.org/wiki/Palabra_(inform%C3%A1tica)

Este mismo análisis hecho con el ATmega328P, podemos hacerlo con otros microcontroladores:

Dentro de los microcontroladores, la tendencia es a usar MCUs de 32 bits con arquitectura ARM. La arquitectura ARM es el conjunto de instrucciones de 32 y 64 bits más ampliamente utilizado en unidades producidas. Concebida originalmente por Acorn Computers para su uso en ordenadores personales, los primeros productos basados ​​en ARM eran los Acorn Archimedes, lanzados en 1987.

La relativa simplicidad de los procesadores ARM los hace ideales para aplicaciones de baja potencia. Como resultado, se han convertido en dominante en el mercado de la electrónica móvil e integrada, encarnados en microprocesadores y microcontroladores pequeños, de bajo consumo y relativamente bajo costo. En 2005, alrededor del 98% de los más de mil millones de teléfonos móviles vendidos utilizaban al menos un procesador ARM. Desde 2009, los procesadores ARM son aproximadamente el 90% de todos los procesadores RISC de 32 bits integrados.

La arquitectura ARM es licenciable. Esto significa que el negocio principal de ARM Holdings es la venta de núcleos IP, estas licencias se utilizan para crear microcontroladores y CPUs basados ​​en este núcleo. ARM Cortex M es un grupo de procesadores RISC de 32 bits licenciados por ARM Holdings. La web oficial es http://www.arm.com/products/processors/cortex-m. Además existen otras familias de ARM: https://en.wikipedia.org/wiki/List_of_ARM_microarchitectures

Más información:

Para saber más de microcontroladores, ver estos recursos:

AVR vs PIC:

Esquema lógico de Arduino

El funcionamiento interno de un microcontrolador se puede explicar con un diagrama de bloques o esquema lógico, donde se ven en cada bloque cada unidad interna del microcontrolador y cómo se comunica con el restos de unidades.

Arquitectura de microcontroladores: http://sistdig.wikidot.com/wiki:arquitectura

Diagrama de bloques simplificado de un microcontrolador. Se compone de tres bloques fundamentales: la CPU ( central Processing Unit), memoria (RAM y ROM) y las entrada y salidas. Los bloques se conectan entre sí mediante grupos de líneas eléctricas denominadas buses o pistas. Los buses pueden ser de direcciones (si transportan direcciones de memoria o entrada y salida), de datos (si transportan datos o instrucciones) o de control (si transportan señales de control diversas). La CPU es el cerebro central del microprocesador y actúa bajo control del programa almacenado en la memoria. La CPU se ocupa básicamente de traer las instrucciones del programa desde la memoria, interpretarlas y hacer que se ejecuten. La CPU también incluye los circuitos para realizar operaciones aritméticas y lógicas elementales con los datos binarios, en la denominada Unidad Aritmética y Lógica (ALU: Aritmetic and Logic Unit).

Diagramas de bloques de un microcontrolador PIC:

Diagrama de bloques de un microcontrolador AVR de Atmel, incluido el ATmega328p:

El sistema de reloj determina la velocidad de trabajo del microcontrolador. Con 16 MHZ se ejecuta una instrucción en 62,5 nanosegundos (1/16 Mhz), correspondiente a 1 ciclo de máquina. El microcontrolador tiene diferentes opciones de circuito de reloj tal como lo muestra la siguiente imagen:

En un registro interno del microcontrolador se encuentran 5 opciones diferentes de reloj que son seleccionadas por medio de un Multiplexor. De este multiplexor sale la señal de reloj, la cual pasa a través de un prescaler, este prescaler se puede utilizar para reducir la frecuencia, reducir el consumo de energía y mejorar la estabilidad de la señal de reloj.El factor del prescaler va de 1 a 256, en potencias de 2. En Arduino, por defecto está desactivado, por consiguiente trabaja a la frecuencia del oscilador externo.

La señal de reloj es distribuida por la unidad de control a los diferentes bloques existentes: la CPU, las memorias, los módulos de entrada/salida, los contadores/timers, el SPI y la USART, al igual que el conversor Análogo Digital ADC.

El microcontrolador ATmega328  tiene tres timers (timer 0, timer 1, timer 2) que también se pueden usar como contadores. Los timers 0 y 2 son de 8 bits y el timer 1 de 16. Estos timers tienen un módulo de preescalado para su propia señal de reloj que puede provenir de su sistema de reloj interno o por pines externos (modo contador).

Son módulos que funcionan en paralelo a la CPU y de forma independiente a ella. El funcionamiento básico consiste en aumentar el valor del registro del contador al ritmo que marca su señal de reloj.

Usando el reloj interno o un cristal externo puede ser utilizado para medir tiempos puesto que utiliza una señal periódica, precisa y de frecuencia conocida; mientras que si la señal viene de un pin externo puede contar eventos que se produzcan en el exterior y que se reflejen en cambios de nivel de tensión de los pines.

Estos contadores también forman parte del generador de señales PWM y permiten configurar tanto la frecuencia como el ciclo de trabajo.

Registros de memoria

Todos los microcontroladores tienen un conjunto de instrucciones que suele ser un conjunto pequeño al tratarse de arquitectura RISC. La CPU cuenta con ese número de instrucciones que sabe ejecutar.

El conjunto de instrucciones para los microcontroladores Atmel de 8 bits es: http://www.atmel.com/Images/Atmel-0856-AVR-Instruction-Set-Manual.pdf

En el caso del ATmega328p, tiene una arquitectura RISC con 131 instrucciones, la mayoría de ellas ejecutadas en un solo ciclo de reloj.

Más información sobre la ALU del Atmega328p en la página 25 de http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf  

Los registros son unas zonas concretas de la memoria RAM accesibles directamente desde la CPU o desde otros elementos del microcontrolador que permite hacer operaciones directamente y de forma más rápida.

Trabajar con registros de memoria puede ser difícil si sólo se escribe un programa en lenguaje ensamblador. Al utilizar el lenguaje de programación de alto nivel como es C basta con escribir el nombre del registro y su dirección de memoria, a partir de esa información, el compilador selecciona el registro necesario. Las instrucciones apropiadas para la selección del registro serán incorporadas en el código durante el proceso de la compilación.

Más información: https://en.wikipedia.org/wiki/Processor_register

La memoria RAM en el ATmega328p se divide en varias partes, todos los grupos de registros se ponen a cero al apagar la fuente de alimentación. La SRAM del 328p se distribuye de la siguiente forma:

Las primeras 32 localizaciones de la memoria son el fichero de registros (Register File). Las siguientes 64 localizaciones de memoria es la standard I/O memory y después las 160 siguientes localizaciones son la Extended I/O memory. Por último las siguientes 2K localizaciones son la memoria interna SRAM.

Las 5 diferentes modos de direccionamiento para los datos de memoria son:

  • Direct – The direct addressing reaches the entire data space.
  • Indirect with Displacement – The Indirect with Displacement mode reaches 63 address locations from the base address given by the Y- or Z-register.
  • Indirect – In the Register File, registers R26 to R31 feature the indirect addressing pointer registers.
  • Indirect with Pre-decrement – The address registers X, Y, and Z are decremented.
  • Indirect with Post-increment – The address registers X, Y, and Z are incremented.

Los 32 registros de propósito general, los 64 I/O Registers, los 160 Extended I/O Registers y los 2K bytes de SRAM interna en el dispositivo son todos accesibles mediante estos modos de direccionamiento.

Los registros de propósito general se utilizan para almacenar los datos temporales y los resultados creados durante el funcionamiento de la ALU. Los 32 General Purpose Working Registers están directamente conectados a la ALU, permitiendo ser accedidos dos registros de forma independiente en una sola instrucción ejecutada en un ciclo de reloj.

Seis de los 32 registros de propósito general pueden ser usados como 3 punteros de registros de 16-bit de acceso indirecto para direccionamiento del espacio de datos, habilitando cálculos eficientes de direcciones. Uno de estos punteros de dirección puede ser usado como un puntero de dirección para búsqueda en las memoria Flash del microcontrolador. Estos registros con funciones añadidas con los registros de 16-bit X-, Y- y Z-. Más información en la página 28 de http://www.atmel.com/Images/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_datasheet.pdf

Para más información ver página 35 de http://www.atmel.com/Images/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_datasheet.pdf

Los I/O registers localizados en las direcciones 0x20 a 0xFF, a diferencia de los registros de propósito general, su propósito es predeterminado durante el proceso de fabricación y no se pueden cambiar. Como los bits están conectados a los circuitos particulares en el chip (convertidor A/D, módulo de comunicación serial, etc), cualquier cambio de su contenido afecta directamente al funcionamiento del microcontrolador o de alguno de los circuitos. Esta es la forma en que a bajo nivel se interactúa por ejemplo con los pines del microcontrolador.

Un resumen de todos los registros I/O del ATmega328p se puede ver en la página 428 de http://www.atmel.com/Images/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_datasheet.pdf

Registros para:

Más información sobre registros y su uso en:

Práctica: Registros Arduino

Veamos algunos valores de los registros de Arduino con el sketch ShowInfo de http://playground.arduino.cc/Main/ShowInfo

Este sketch dispone de un menú que nos permite hacer varias operaciones, pulsar opción i (Show Information) y t (Timer Register Dump) para ver datos de los registros.

Este sketch es bastante complejo pero puede servir como plantilla cuando queramos acceder desde un sketch a un registro concreto.

Algunos detalles del sketch:

Solución Ejercicio 05: https://github.com/jecrespo/aprendiendoarduino-Curso_Arduino_Avanzado_2017/tree/master/Ejercicio05-showInfo

Práctica: Temperatura Interna Microcontrolador

La mayoría de los nuevos chips AVR (utilizados en el Arduino) tiene un sensor de temperatura interno. No suele utilizarse, ya que no es exacta. Sin embargo, hay varias situaciones en las que se puede utilizar este sensor.

La temperatura interna es la temperatura dentro del chip, al igual que la temperatura de la CPU de un ordenador. Si el Arduino no está durmiendo, esta temperatura aumentará. Si los pines de salida se utilizan para dar corriente (por ejemplo encender leds) la temperatura interna aumenta más. Esta temperatura no puede usarse para medir la temperatura ambiente.

En situaciones con altas temperaturas una lectura de temperatura calibrada podría evitar daños. La mayoría de los chips AVR más recientes tienen un rango de temperatura de hasta 85 grados Celsius. Esta funcionalidad podría utilizarse para apagarse a 80 grados Celsius.

Más información: http://playground.arduino.cc/Main/InternalTemperatureSensor

Ejecutar el sketch leer y entender lo que hace y probarlo. Comparar con otros Arduinos y calibrar.

Ver en la página 306 y 316 de la documentación del microcontrolador: http://www.atmel.com/Images/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_datasheet.pdf

La función GetTemp() es la que calcula la temperatura. Para ello configura la referencia interna del conversor analógico digital y lo habilita. Luego lee el dato del ADC mediante el registro ADCW y hace el cálculo para obtener la temperatura.

Como el offset puede variar de una MCU a otra, para calibrar, lo mejor es leer la temperatura de una placa fría y comparar con la temperatura exterior.

Solución Ejercicio 06: https://github.com/jecrespo/aprendiendoarduino-Curso_Arduino_Avanzado_2017/tree/master/Ejercicio06-InternalTemperature

Microcontrolador vs Microprocesador

Diferencia principal entre un microcontrolador (Arduino) y un microprocesador (Raspberry Pi) son las capacidades de entradas y salidas, así como el rendimiento de la CPU.

Analogía: Arduino es un Autómata programable, Raspberry Pi es un Ordenador, así que a la hora de decidirse que utilizar para un proyecto pensar que usaríamos un autómata o un Ordenador.

Un resumen de como funciona una MCU y como agregar un programa: http://www.electronicaestudio.com/microcontrolador.htm que es diferente a como funciona un microprocesador como los que tenemos en nuestro ordenador o portatil.

Para programación en tiempo real el HW a utilizar es el Arduino, para programación intensiva con gran cantidad de datos usaríamos una Raspberry Pi o un PC.

En un proyecto grande la elección es usar ambos, cada uno en la tarea que mejor hace. Por ejemplo, la recolección de datos, supervisión del entorno, envío de alarmas, accionar motores, etc.. lo dejaremos para el arduino, el tratamiento de los datos recogidos, el interfaz gráfico de usuario, envío de correos, etc… lo dejaremos para un ordenador o una raspberry pi o similar.

Diferencias entre el microprocesador y el microcontrolador, características al usarlos en la implementación de sistemas digitales programables:

  • CPU
  • Memorias RAM y ROM
  • Velocidad de Operación
  • Tamaño
  • Costes
  • Interferencias (ruido)
  • Tiempo de desarrollo

El uso de una u otra tecnología depende del fin que se espera, pues debido a sus características propias, los microcontroladores y los microprocesadores pueden adquirir variados y diferentes espacios de implementación, por ejemplo, los microprocesadores se han desarrollado fundamentalmente orientados al mercado de los ordenadores personales y las estaciones de trabajo, pues allí se requiere una elevada potencia de cálculo, el manejo de gran cantidad de memoria y una gran velocidad de procesamiento. Mientras que los microcontroladores están concebidos fundamentalmente para ser utilizados en aplicaciones puntuales, es decir, aplicaciones donde el microcontrolador debe realizar un pequeño número de tareas, al menor costo posible. En estas aplicaciones el microcontrolador ejecuta un programa almacenado permanentemente en su memoria, el cual trabaja con algunos datos almacenados temporalmente e interactúa con el exterior a través de las líneas de entrada y salida de que dispone.

Microprocesadores Microcontroladores
CPU El microprocesador tiene mucha más potencia de cálculo, por lo cual solamente realiza sus funciones con lo que tiene (datos) y su algoritmo o programa establecida. Es una de sus partes principales, la cual se encarga de dirigir sus operaciones.
Memorias RAM y ROM Son dispositivos externos que lo complementan para su óptimo funcionamiento. Las incluye en un solo circuito integrado.
Velocidad de Operación Rápida Lenta en comparación con la de un microprocesador
Tamaño La configuración mínima básica de un Microprocesador está constituida por un Microprocesador, una memoria RAM, una memoria ROM, un decodificador de direcciones, lo cual lo convierte en un circuito bastante engorroso. El Microcontrolador incluye todo estos elementos en un solo Circuito Integrado por lo que implica una gran ventaja en varios factores,  como por ejemplo, la disminución en el tamaño del circuito impreso por la reducción de los circuitos externos.
Costos Para el Microprocesador, el costo es muy alto en la actualidad. El costo para un sistema basado en Microcontrolador es mucho menor.
Interferencias Son más susceptibles a la interferencia electromagnética debido a su tamaño y a su cableado externo que lo hace más propenso al ruido. El alto nivel de integración reduce los niveles de interferencia electromagnética
Tiempo de desarrollo El tiempo de desarrollo de un microprocesador es lento. Por el contrario, el de un microcontrolador es rápido.

Un buen curso sobre microcontroladores es accesible desde http://www.itescam.edu.mx/portal/asignatura.php?clave_asig=MTF-1021&carrera=IMCT-2010-229&id_d=206. Se trata de una asignatura de microcontroladores.

Más información sobre microcontroladores: https://sites.google.com/site/electronicscience20/Micro/pic-asembler/2-microcontroladores

Raspberry Pi es un ordenador de placa reducida o (placa única) (SBC) de bajo coste, desarrollado en Reino Unido por la Fundación Raspberry Pi. El diseño incluye un System-on-a-chip Broadcom BCM2837, que contiene un procesador central (CPU) ARM1176JZF-S a 1.2 GHz quad-core ARMv8, un procesador gráfico (GPU) VideoCore IV, y 1GB de memoria RAM.

Los sistemas operativos soportados son distribuciones Linux para arquitectura ARM, Raspbian (derivada de Debian), RISC OS 5, Arch Linux ARM (derivado de Arch Linux) y Pidora (derivado de Fedora)

Web principal: http://www.raspberrypi.org/

Especificaciones técnicas: http://es.wikipedia.org/wiki/Raspberry_Pi#Especificaciones_t.C3.A9cnicas

El System-on-a-chip Broadcom BCM2835: http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

Raspberry Pi:

GPIO:

También intel saca su alternativa a raspberry: http://www.intel.es/content/www/es/es/do-it-yourself/edison.html

Más información: https://aprendiendoarduino.wordpress.com/2016/06/25/arduino-vs-raspberry-pi-2/

Un sketch de Arduino no es un sistema operativo: https://es.wikipedia.org/wiki/Sistema_operativo. Un sistema operativo es un programa o conjunto de programas de un sistema informático que gestiona los recursos de hardware y provee servicios a los programas de aplicación de software, ejecutándose en modo privilegiado respecto de los restantes (aunque puede que parte de él se ejecute en espacio de usuario)

Se puede decir que el sketch de Arduino es la aplicación que gestiona directamente los recursos de HW sin necesidad de un SO o un kernel intermedio.

En el caso de raspberry Pi, el programa o sketch se ejecuta como una aplicación sobre un sistema operativo y para interaccionar con el HW necesita de la interacción con el sistema operativo.

Para entender qué es el microcontrolador dentro de Arduino, leer: https://aprendiendoarduino.wordpress.com/2015/02/25/como-conseguir-un-arduino-gratis/

¿Podría convertir un arduino en un ordenador? ¿Cómo? ¿Es práctico?. Arduino como un ordenador:

También es posible convertir un ordenador en un microcontrolador http://www.instructables.com/id/HackTurn-PC-into-a-microcontroller-for-free/?ALLSTEPS

Microcontroladores 8 bits y 32 bits

A principios de 1970 TI produjo el primero de los microcontroladores el TMS 1000. Aunque Intel hizo anteriormente el microcontrolador de 4 bits Intel 4004, necesitaba de una circuitería externa para funcionar, por lo que el TMS 1000 es considerado el primer microcontrolador completo en un chip.

El tamaño de la palabra es un aspecto importante en la arquitectura de procesadores. La mayoría de los registros de un Microprocesador/Microcontrolador tienen el tamaño de la palabra y las operaciones que hace la ALU es manejando operandos cuyo tamaño es el tamaño de la palabra, así como la cantidad de datos transferidos a memoria y dirección utilizada para designar una localización de memoria a menudo ocupa una palabra.

El tamaño de palabra de un microprocesador/microcontrolador influye principalmente en el tamaño de datos que puede manejar y la cantidad de memoria RAM que puede usar, así como la velocidad de procesamiento.

También los valores que pueden tomar las variables dependen del tamaño de la palabra. http://es.wikipedia.org/wiki/Palabra_%28inform%C3%A1tica%29

Arduinos con procesadores de 8 bits:

Arduinos o compatibles con procesadores de 32 bits: